Интегрирование иррациональных функций. Сложные интегралы

Под иррациональным понимают выражение, в котором независимая переменная %%x%% или многочлен %%P_n(x)%% степени %%n \in \mathbb{N}%% входят под знак радикала (от латинского radix — корень), т.е. возводятся в дробную степень. Некоторые классы иррациональных относительно %%x%% подынтегральных выражений заменой переменной удается свести к рациональным выражениям относительно новой переменной.

Понятие рациональной функции одной переменной можно распространить на несколько аргументов. Если над каждым аргументом %%u, v, \dotsc, w%% при вычислении значения функции предусмотрены лишь арифметические действия и возведение в целую степень, то говорят о рациональной функции этих аргументов, которую обычно обозначают %%R(u, v, \dotsc, w)%%. Аргументы такой функции сами могут быть функциями независимой перменной %%x%%, в том числе и радикалами вида %%\sqrt[n]{x}, n \in \mathbb{N}%%. Например, рациональная функция $$ R(u,v,w) = \frac{u + v^2}{w} $$ при %%u = x, v = \sqrt{x}%% и %%w = \sqrt{x^2 + 1}%% является рациональной функцией $$ R\left(x, \sqrt{x}, \sqrt{x^2+1}\right) = \frac{x + \sqrt{x^2}}{\sqrt{x^2 + 1}} = f(x) $$ от %%x%% и радикалов %%\sqrt{x}%% и %%\sqrt{x^2 + 1}%%, тогда как функция %%f(x)%% будет иррациональной (алгебраической) функцией одной независимой переменной %%x%%.

Рассмотрим интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%%. Такие интегралы рационалируются заменой переменной %%t = \sqrt[n]{x}%%, тогда %%x = t^n, \mathrm{d}x = nt^{n-1}%%.

Пример 1

Найти %%\displaystyle\int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}}%%.

Подынтегральная функция искомого аргумента записана как функция от радикалов степени %%2%% и %%3%%. Так как наименьшее общее кратное чисел %%2%% и %%3%% равно %%6%%, то данный интеграл является интегралом типа %%\int R(x, \sqrt{x}) \mathrm{d}x%% и может быть рационализирован посредством замены %%\sqrt{x} = t%%. Тогда %%x = t^6, \mathrm{d}x = 6t \mathrm{d}t, \sqrt{x} = t^3, \sqrt{x} =t^2%%. Следовательно, $$ \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} = \int \frac{6t^5 \mathrm{d}t}{t^3 + t^2} = 6\int\frac{t^3}{t+1}\mathrm{d}t. $$ Примем %%t + 1 = z, \mathrm{d}t = \mathrm{d}z, z = t + 1 = \sqrt{x} + 1%% и $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} &= 6\int\frac{(z-1)^3}{z} \mathrm{d}t = \\ &= 6\int z^2 dz -18 \int z \mathrm{d}z + 18\int \mathrm{d}z -6\int\frac{\mathrm{d}z}{z} = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt{x} + 1\right)^3 - 9 \left(\sqrt{x} + 1\right)^2 + \\ &+~ 18 \left(\sqrt{x} + 1\right) - 6 \ln\left|\sqrt{x} + 1\right| + C \end{array} $$

Интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%% являются частным случаем дробно линейных иррациональностей, т.е. интегралов вида %%\displaystyle\int R\left(x, \sqrt[n]{\dfrac{ax+b}{cd+d}}\right) \mathrm{d}x%%, где %%ad - bc \neq 0%%, которые допускают рационализацию путем замены переменной %%t = \sqrt[n]{\dfrac{ax+b}{cd+d}}%%, тогда %%x = \dfrac{dt^n - b}{a - ct^n}%%. Тогда $$ \mathrm{d}x = \frac{n t^{n-1}(ad - bc)}{\left(a - ct^n\right)^2}\mathrm{d}t. $$

Пример 2

Найти %%\displaystyle\int \sqrt{\dfrac{1 -x}{1 + x}}\dfrac{\mathrm{d}x}{x + 1}%%.

Примем %%t = \sqrt{\dfrac{1 -x}{1 + x}}%%, тогда %%x = \dfrac{1 - t^2}{1 + t^2}%%, $$ \begin{array}{l} \mathrm{d}x = -\frac{4t\mathrm{d}t}{\left(1 + t^2\right)^2}, \\ 1 + x = \frac{2}{1 + t^2}, \\ \frac{1}{x + 1} = \frac{1 + t^2}{2}. \end{array} $$ Следовательно, $$ \begin{array}{l} \int \sqrt{\dfrac{1 -x}{1 + x}}\frac{\mathrm{d}x}{x + 1} = \\ = \frac{t(1 + t^2)}{2}\left(-\frac{4t \mathrm{d}t}{\left(1 + t^2\right)^2}\right) = \\ = -2\int \frac{t^2\mathrm{d}t}{1 + t^2} = \\ = -2\int \mathrm{d}t + 2\int \frac{\mathrm{d}t}{1 + t^2} = \\ = -2t + \text{arctg}~t + C = \\ = -2\sqrt{\dfrac{1 -x}{1 + x}} + \text{arctg}~\sqrt{\dfrac{1 -x}{1 + x}} + C. \end{array} $$

Рассмотрим интегралы вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%%. В простейших случаях такие интегралы сводятся к табличным, если после выделения полного квадрата сделать замену переменных.

Пример 3

Найти интеграл %%\displaystyle\int \dfrac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}}%%.

Учитывая, что %%x^2 + 4x + 5 = (x+2)^2 + 1%%, примем %%t = x + 2, \mathrm{d}x = \mathrm{d}t%%, тогда $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}} &= \int \frac{\mathrm{d}t}{\sqrt{t^2 + 1}} = \\ &= \ln\left|t + \sqrt{t^2 + 1}\right| + C = \\ &= \ln\left|x + 2 + \sqrt{x^2 + 4x + 5}\right| + C. \end{array} $$

В более сложных случаях для нахождения интегралов вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%% используются

Вспоминаем счастливые школьные годы. Пионеры на уроках математики, приступая к изучению корней, в первую очередь знакомились с квадратным корнем. Мы пойдем тем же путем.

Пример 1

Найти неопределенный интеграл

Анализируя подынтегральную функцию, приходишь к печальному выводу, что она совсем не напоминает табличные интегралы. Вот если бы всё это добро находилось в числителе – было бы просто. Или бы корня внизу не было. Или многочлена. Никакие методы интегрирования дробей тоже не помогают. Что делать?

Основной приём решения иррациональных интегралов – это замена переменной, которая избавит нас от ВСЕХ корней в подынтегральной функции.

Отметим, что эта замена немного своеобразная, ее техническая реализация отличается от «классического» способа замены, который рассмотрен на уроке Метод замены в неопределенном интеграле .

В данном примере нужно провести замену x = t 2 , то есть, вместо «икса» под корнем у нас окажется t 2 . Почему замена именно такая? Потому что , и в результате замены корень пропадёт.

Если бы в подынтегральной функции вместо квадратного корня у нас находился , то мы бы провели замену . Если бы там был , то провели бы и так далее.

Хорошо, у нас превратится в . Что произойдет с многочленом ? Сложностей нет: если , то .

Осталось выяснить, во что превратится дифференциал . Делается это так:

Берем нашу замену и навешиваем дифференциалы на обе части :

(распишем максимально подробно).

Оформление решения должно выглядеть примерно так:

.

Проведем замену: .

.

(1) Проводим подстановку после замены (как, что и куда, уже рассмотрено).

(2) Выносим константу за пределы интеграла. Числитель и знаменатель сокращаем на t .

(3) Получившийся интеграл является табличным, готовим его для интегрирования, выделяя квадрат.

(4) Интегрируем по таблице, используя формулу

.

(5) Проводим обратную замену. Как это делается? Вспоминаем, от чего плясали: если , то .

Пример 2

Найти неопределенный интеграл

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то так получилось, что в Примерах 1, 2 «голый» числитель с одиноким дифференциалом . Исправим ситуацию.

Пример 3

Найти неопределенный интеграл

Предварительный анализ подынтегральной функции опять показывает, что лёгкого пути нет. А поэтому нужно избавляться от корня.

Проведем замену: .

Заобозначаем ВСЁ выражение под корнем . Замена из предыдущих примеров здесь не годится (точнее, сделать-то её можно, но это не избавит нас от корня).

Навешиваем дифференциалы на обе части:

С числителем разобрались. Что делать с в знаменателе?

Берем нашу замену и выражаем из неё: .

Если , то .

(1) Проводим подстановку в соответствии с выполненной заменой.

(2) Причесываем числитель. Константу здесь я предпочел не выносить за знак интеграла (можно делать и так, ошибкой не будет)

(3) Раскладываем числитель в сумму. Еще раз настоятельно рекомендуем ознакомиться с первым параграфом урока Интегрирование некоторых дробей . Канители с разложением числителя в сумму в иррациональных интегралах будет предостаточно, очень важно отработать это прием.

(4) Почленно делим числитель на знаменатель.

(5) Используем свойства линейности неопределенного интеграла. Во втором интеграле выделяем квадрат для последующего интегрирования по таблице.

(6) Интегрируем по таблице. Первый интеграл совсем простой, во втором используем табличную формулу высокого логарифма .

(7) Проводим обратную замену. Если мы проводили замену , то, обратно: .

Пример 4

Найти неопределенный интеграл

Это пример для самостоятельного решения, если вы невнимательно проработали предыдущие примеры, то допустите ошибку! Полное решение и ответ в конце урока.

Принципиально так же решаются интегралы с несколькими одинаковыми корнями, например

И т.д. А что делать, если в подынтегральной функции корни разные ?

Пример 5

Найти неопределенный интеграл

Вот и пришла расплата за голые числители. Когда встречается такой интеграл, обычно становится страшно. Но страхи напрасны, после проведения подходящей замены подынтегральная функция упрощается. Задача состоит в следующем: провести удачную замену, чтобы сразу избавиться от ВСЕХ корней.

Когда даны разные корни, удобно придерживаться определённой схемы решения.

Сначала выписываем на черновике подынтегральную функцию, при этом все корни представляем в виде :

Нас будут интересовать знаменатели степеней:

Определение 1

Совокупность всех первообразных заданной функции $y=f(x)$, определенной на некотором отрезке, называется неопределенным интегралом от заданной функции $y=f(x)$. Неопределенный интеграл обозначается символом $\int f(x)dx $.

Замечание

Определение 2 можно записать следующим образом:

\[\int f(x)dx =F(x)+C.\]

Не от всякой иррациональной функции можно выразить интеграл через элементарные функции. Однако большинство таких интегралов с помощью подстановок можно привести к интегралам от рациональных функций, которые можно выразить интеграл через элементарные функции.

    $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $;

    $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $;

    $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $.

I

При нахождении интеграла вида $\int R\left(x,x^{m/n} ,...,x^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

При данной подстановке каждая дробная степень переменной $x$ выражается через целую степень переменной $t$. В результате чего подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 1

Выполнить интегрирование:

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} .\]

Решение:

$k=4$ - общий знаменатель дробей $\frac{1}{2} ,\, \, \frac{3}{4} $.

\ \[\begin{array}{l} {\int \frac{x^{1/2} dx}{x^{3/4} +1} =4\int \frac{t^{2} }{t^{3} +1} \cdot t^{3} dt =4\int \frac{t^{5} }{t^{3} +1} dt =4\int \left(t^{2} -\frac{t^{2} }{t^{3} +1} \right)dt =4\int t^{2} dt -4\int \frac{t^{2} }{t^{3} +1} dt =\frac{4}{3} \cdot t^{3} -} \\ {-\frac{4}{3} \cdot \ln |t^{3} +1|+C} \end{array}\]

\[\int \frac{x^{1/2} dx}{x^{3/4} +1} =\frac{4}{3} \cdot \left+C\]

II

При нахождении интеграла вида $\int R\left(x,\left(\frac{ax+b}{cx+d} \right)^{m/n} ,...,\left(\frac{ax+b}{cx+d} \right)^{r/s} \right)dx $ необходимо выполнить следующую подстановку:

где $k$ - общий знаменатель дробей $\frac{m}{n} ,...,\frac{r}{s} $.

В результате данной подстановки подынтегральная функция преобразуется в рациональную функцию от переменной $t$.

Пример 2

Выполнить интегрирование:

\[\int \frac{\sqrt{x+4} }{x} dx .\]

Решение:

Сделаем следующую подстановку:

\ \[\int \frac{\sqrt{x+4} }{x} dx =\int \frac{t^{2} }{t^{2} -4} dt =2\int \left(1+\frac{4}{t^{2} -4} \right)dt =2\int dt +8\int \frac{dt}{t^{2} -4} =2t+2\ln \left|\frac{t-2}{t+2} \right|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{\sqrt{x+4} }{x} dx =2\sqrt{x+4} +2\ln \left|\frac{\sqrt{x+4} -2}{\sqrt{x+4} +2} \right|+C.\]

III

При нахождении интеграла вида $\int R\left(x,\sqrt{ax^{2} +bx+c} \right)dx $ выполняется так называемая подстановка Эйлера (используется одна из трех возможных подстановок).

Первая подстановка Эйлера

Для случая $a>

Взяв перед $\sqrt{a} $ знак «+», получим

Пример 3

Выполнить интегрирование:

\[\int \frac{dx}{\sqrt{x^{2} +c} } .\]

Решение:

Сделаем следующую подстановку (случай $a=1>0$):

\[\sqrt{x^{2} +c} =-x+t,\, \, x=\frac{t^{2} -c}{2t} ,\, \, dx=\frac{t^{2} +c}{2t^{2} } dt,\, \, \sqrt{x^{2} +c} =-\frac{t^{2} -c}{2t} +t=\frac{t^{2} +c}{2t} .\] \[\int \frac{dx}{\sqrt{x^{2} +c} } =\int \frac{\frac{t^{2} +c}{2t^{2} } dt}{\frac{t^{2} +c}{2t} } =\int \frac{dt}{t} =\ln |t|+C\]

Сделав обратную замену, получим окончательный результат:

\[\int \frac{dx}{\sqrt{x^{2} +c} } =\ln |\sqrt{x^{2} +c} +x|+C.\]

Вторая подстановка Эйлера

Для случая $c>0$ необходимо выполнить следующую подстановку:

Взяв перед $\sqrt{c} $ знак «+», получим

Пример 4

Выполнить интегрирование:

\[\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx .\]

Решение:

Сделаем следующую подстановку:

\[\sqrt{1+x+x^{2} } =xt+1.\]

\ \[\sqrt{1+x+x^{2} } =xt+1=\frac{t^{2} -t+1}{1-t^{2} } \] \

$\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =\int \frac{(-2t^{2} +t)^{2} (1-t)^{2} (1-t^{2})(2t^{2} -2t+2)}{(1-t^{2})^{2} (2t-1)^{2} (t^{2} -t+1)(1-t^{2})^{2} } dt =\int \frac{t^{2} }{1-t^{2} } dt =-2t+\ln \left|\frac{1+t}{1-t} \right|+C$Сделав обратную замену, получим окончательный результат:

\[\begin{array}{l} {\int \frac{(1-\sqrt{1+x+x^{2} })^{2} }{x^{2} \sqrt{1+x+x^{2} } } dx =-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +\ln \left|\frac{x+\sqrt{1+x+x^{2} } -1}{x-\sqrt{1+x+x^{2} } +1} \right|+C=-2\cdot \frac{\sqrt{1+x+x^{2} } -1}{x} +} \\ {+\ln \left|2x+2\sqrt{1+x+x^{2} } +1\right|+C} \end{array}\]

Третья подстановка Эйлера

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Этом параграфе будет рассмотрен метод интегрирования рациональных функций. 7.1. Краткие сведения о рациональных функциях Простейшей рациональной функцией является многочлен ti-ой степени, т.е. функция вида где - действительные постоянные, причем а0 Ф 0. Многочлен Qn(x), у которого коэффициент а0 = 1» называется приведенным. Действительное число b называется корнем многочлена Qn(z), если Q„(b) = 0. Известно, что каждый многочлен Qn(x) с действительными коэффициентами единственным образом разлагается на действительные множители вида где р, q - действительные коэффициенты, причем квадратичные множители не имеют действительных корней и, следовательно, неразложимы на действительные линейные множители. Объединяя одинаковые множители (если таковые имеются) и полагая, для простоты, многочлен Qn(x) приведенным, можнозаписатьегоразложение на множители в виде где - натуральные числа. Так как степень многочлена Qn(x) равна п, то сумма всех показателей а, /3,..., А, сложенная с удвоенной суммой всех показателей щ,..., ц, равна п: Корень а многочлена называется простым или однократным, если а = 1, и кратным, если а > 1; число а называется кратностью корня а. То же самое относится и к другим корням многочлена. Рациональной функцией f(x) или рациональной дробью называется отношение двух многочленов причем предполагается, что многочлены Рт{х) и Qn{x) не имеют общих множителей. Рациональная дробь называется правильной, если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе, т. е. . Если же m п, то рациональная дробь называется неправильной и в этом случае, разделив числитель на знаменатель по правилу деления многочленов, ее можно представить в виде где - некоторые многочлены, а ^^ является правильной рациональной дробью. Пример 1. Рациональная дробь является неправильной дробью. Разделив «уголком», будем иметь Следовательно. Здесь. причем правильная дробь. Определение. Простейшими (или элементарными) дробями называются рациональные дроби следующих четырех типов: где - действительные числа, к - натуральное число, большее или равное 2, а квадратный трехчлен х2 + рх + q не имеет действительных корней, так что -2 _2 его дискриминант В алгебре доказывается следующая теорема. Теорема 3. Правильная рациональная дробь с действительными коэффициентами, знаменатель которой Qn(x) имеет вид разлагается единственным способом на сумму простейших дробей по правилу Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера В этом разложении - некоторые действительные постоянные, часть которых может быть равна нулю. Для нахождения этих постоянных правую.часть равенства (I) приводят к общему знаменателю, а затем приравнивают коэффициенты при одинаковых степенях х в числителях левой и правой частей. Это дает систему линейных уравнений, из которой находятся искомые постоянные. . Этот метод нахождения неизвестных постоянных называется методом неопределенных коэффициентов. Иногда бывает удобнее применить другой способ нахождения неизвестных постоянных, который состоит в том, что после приравнивания числителей получается тождество относительно х, в котором аргументу х придают некоторые значения, например, значения корней, в результате чего получаются уравнения для нахождения постоянных. Особенно он удобен, если знаменатель Q„(x) имеет только действительные простые корни. Пример 2. Разложи ь на простейшие дроби рациональную дробь Данная дробь правильная. Разлагаем знаменатель на множи ели: Так как корни знаменателя действительные и различные, то на основании формулы (1) разложение дроби на простейшие будет иметь вид Привода правую честь «того равенства к общему знаменателю и приравнивая числители а его левой и правой частях, получим тождество или Неизвестные коэффициенту А. 2?, С найдем двумя способами. Первый споооб. Приравнивая коэффициенты при одинаковых степенях х, т.в. при (свободный член), а левой и правой частях тождестве, получим линейную систему уравнений для нахождения неизвестных коэффициентов А, В, С: Это система имеет единственное решение С Второй способ. Тек как корни знаменателя рваны ствв в я 0, получим 2 = 2А, откуда А * 1; г я 1, получим -1 * -В, откуда 5*1; х я 2, получим 2 = 2С. откуда С» 1, и искомое разложение имеет вид 3. Рехложнтъ не простейшие дроби рациональную дробь 4 Разлагаем многочлен, стоящий а энаиеивтвле, на множители: . Знаменатель имеет две различных двйствитв ьных корня: х\ = 0 кратности кратности 3. Поэтому разложение данной дроби не простейшие имеет вид Приведя правую часть к общему знаменателю, найдем или Первый способ. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях последнего тождаства. получим линейную систему уравнений Эта система имеет единственное решение и искомым разложением будет Второй способ. В полученном тождестве полагая х = 0, получаем 1 а А2, или А2 = 1; поле* гея х = -1, получим -3 я В}, или Bj я -3. При подстановке найденных значений коэффициентов А\ и В) а тождество оно примет вид или Полагая х = 0, а затем х = -I. найдем, что = 0, В2 = 0 и. значит, В\ = 0. Таким образом, опять получаем Пример 4. Разложить на простейшие дроби рациональную дробь 4 Знаменатель дроби не имеет действительных корней, так как функция х2 + 1 не обращается е. нуль ни при каких действительных значениях х. Поэтому разложение на простейшие дроби должно иметь вид Отсюда получаем или. Приравнивая коэффициенты при сшинаковых степенях х в левой и правой частях последнего равенства, будем иметь откуда находим и, следовательно, Следует отметить, что в некоторых случаях разложения на простейшие дроби можно получить быстрее и проще, действуя каким-либо другим путем, не пользуясь методом неопределенных коэффициентов. Например, для получения разложения дроби в примере 3, можно прибавить и вычесть в числителе Зх2 и произвести деление, так как уквзано ниже. 7.2. Интегрирование простейших дробей, Как было сказано выше, любую неправильную рациональную дробь можно представить в виде суммы некоторого многочлена и правильной рациональной дроби (§7), причем это представление единственно. Интегрирование многочлена не представляет трудностей, поэтому рассмотрим вопрос об интегрировании правильной рациональной дроби. Так как любая правильная рациональная дробь представима в виде суммы простейших дробей, то ее интегрирование сводится к интегрированию простейших дробей. Рассмотрим теперь вопрос об их интегрировании. III. Для нахождения интеграла от простейшей дроби третьего типа выделим у квадратного трехчлена полный квадрат двучлена: Так как второе слагаемое то положим его равным а2, где а затем сделаем подстанов. Тогда, учитывая линейные свойства интеграла, найдем: Пример 5. Найти интеграл 4 Подынтегральная функция является простейшей дробью третьего типа, так как квадратный трехчлен х1 + Ах + 6 не имеет действительных корней (его дискриминант отрицателен: , а в числителе стоит многочлен первой степени. Поэтому поступаем следующим образом: 1) выделяем полный квадрат в знаменателе 2) делаем подстановку (здесь 3) на*одим интегрвл Для нахождения интеграла от простейшей дроби четвертого типа положим, как и выше, . Тогда получим Интеграл в правой части обозначим через Л и преобразуем его следующим образом: Интеграл в правой части интегрируем по частям, полагая откуда или Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Мы получили так называемую рекуррентную формулу, которая позволяет найти интеграл Jk для любого к = 2, 3,... . Действительно, интеграл J\ является табличным: Полагая в рекуррентной формуле, найдем Зная и полагая Л = 3, легко найдем Jj и так далее. В окончательном результате, подставляя всюду вместо t и а их выражения через х и коэффициенты р и q, получим для первоначального интеграла выражение егочерез х и заданные числа М, ЛГ, р, q. Пример 8. Нейти интеграл « Подынтеграленая функция есть простейшая дробь четвертого типа, так как дискриминант квадратного трехчлена отрицателен, т.е. в значит, знаменатель действительных корней не имеет, и числитель есть многочлен 1-ой степени. 1) Выделяем а знаменателе полный квадрат 2) Делаем подстановку: Интеграл примет вид: Полагая в рекуррентной формуле * = 2, а3 = 1. будем иметь, и, следовательно, искомый интеграл рввен Возвращаясь к переменной х, получим окончательно 7.3. Общий случай Из результатов пп. 1 и 2 этого параграфа непосредственно следует важная теорема. Теорем! 4. Неопредьченный интеграл от любой рациональной функции всегда существует (на интервалах, в которых знаменатель дроби Q„(х) ф 0) и выражается через конечное число элементарных функций, а именно, он является алгебраической сум.чой, членами которой могут быть лишь мнконаены, рациональные дроби, натуральные логарифмы и арктангенсы. Итак, для нахождения неопределенного интеграла от дробно-рациональной функции следует поступать следу юишм образом: 1) если рациональная дробь неправильная, то делением числителя на знаменатель выделяется целая часть, т. е. данная функция представляется в виде суммы многочлена и правильной рациональной дроби; 2) затем знаменатель полученной правильной дроби разлагается на произведение линейных и квадратичных множителей; 3) эта правильная дробь разлагается на сумму простейших дробей; 4) используя линейность интеграла и формулы п. 2, находятся интегралы от каждого слагаемого в отдельности. Пример 7. Найти интеграл М Так как знаменатель есть многочлен третьей стелени, то подынтегральная функция является неправильной дробью. Выделяем в ней целую часть: Следовательно, будем иметь. Знаменатель правильной дроби имеет фи различных действительных корня: и поэтому ее разложение на простейшие дроби имеет вид Отсюда находим. Придавая аргументу х значения, равные корням знаменателя, найдем из этого тождества, что: Следовательно, Искомый интеграл будет равен Пример 8. Найти интеграл 4 Подынтегральная функция является правильной дробью, знаменатель которой имеет два различных действительных корня: х - О кратности 1 и х = 1 кратности 3, Поэтому разложение подынтегральной функции на простейшие дроби имеет вид Приводя правую часть этого равенства к общему знаменателю и сокращая обе части равенства на этст знаменатель, получим или. Приравниваем коэффициенты при одинаковых степенях х в левой и правой частях этого тождества: Отсюда находим. Подставляя найденные значения коэффициентов в разложение, будем иметь Интегрируя, находим: Пример 9. Найти интеграл 4 Знаменатель дроби не имеет действительных корней. Поэтому разложение на простейшие дроби подынтегральной функции имеет вид Отсюда или Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях этого тождества, будем иметь откуда находим и, следовательно, Замечание. В приведенном примере подынтегральную функцию можно представить в виде суммы простейших дробей более простым способом, а именно, в числителе дроби выделяем бином, стоящий в знаменатгле, а затем производим почленное деление: §8. Интегрирование иррациональных функций Функция вида где Рт и £?„ яачяются многочленами степеней тип соответственно от переменных иь«2,... называется рацыональкой функцией от ubu2j... Например, многочлен второй степени от двух переменных и\ и и2 имеет вид где - некоторые действительные постоянные, причем Пример 1, Функция является рациональной функцией от переменных г и у, так как она представляет ообой отношение многочлена третьей степени и многочлене пятой степени а фунщия тисовой не является. В том случае, когда переменные, в свою очередь, являются функциями переменной ж: то функция ] называется рациональной функцией от функций Примера. Фуниция есть рациональная функция от г и рвдиквлв Пряивр 3. Функция вида не является рациональной функцией от х и радикале у/г1 + 1, но она является рациональной функцией от функций Как показывают примеры, интегралы от иррациональных функций не всегда выражаются через элементарные функции. Например, часто встречающиеся в приложениях интегралы не выражаются через элементарные функции; эти интегралы называются эллиптическими интегралами первого и второго родов соответственно. Рассмотрим те случаи, когда интегрирование иррациональных функций можно свести с помощью некоторых подстановок к интегрированию рациональных функций. 1. Пусть требуется найти интеграл где R(x, у) - рациональная функция своих аргументов х и у; m £ 2 - натуральное число; а, 6, с, d - действительные постоянные, удовлетворяющие условию ad- Ьс ^ О (при ad - be = 0 коэффициенты а и Ь пропорциональны коэффициентам с и d, и по-этомуотношение не зависитот ж; значит, в этом случае подынтегральная функция будет являться рациональной функцией переменной х, интегрирование которой было рассмотрено ранее). Сделаем в данном интеграле замену переменной, положив Отсюда выражаем переменную х через новую переменную Имеем х = - рациональная функция от t. Далее находим или, после упрощения, Поэтому где Л1 (t) - рациональная функция от *, так какрациональнаяфунадия от рациональной функции, а также произведение рациональных функций, представляют собой рациональные функции. Интегрировать рациональные функции мы умеем. Пусть Тогда искомый интеграл будет равен При. ИвЙти интеграл 4 Подынтегральна* функция есть рациональная функция от. Поэтому полагаем t = Тогда Интегрирование рациональных функций Краткие сведения о рациональных функциях Интегрирование простейших дробей Общий случай Интегрирование иррациональных функций Первая подстановка Эйлера Вторая подстановка Эйлера Третья подстановка Эйлера Таким образом, получим Примар 5. Найти интеграл Общий знаменатель дробных показателей степеней х равен 12, поэтому подынтегральную функцию можно представить в виде 1 _ 1_ откуда видно, что она является рациональной функцией от: Учитывая это, положим. Следовательно, 2. Рассмотрим интефпы вида где подынтефальная функция такова, что заменив в ней радикал \/ах2 + Ъх + с через у, получим функцию R{x} у) - рациональную относительно обоих аргументов х и у. Этот интеграл сводится к интегралу от рациональной функции другой переменной подстановками Эйлера. 8.1. Первая подстановка Эйлера Пусть коэффициент а > 0. Положим или Отсюда находим х как рациональную функцию от и, значит, Таким образом, указанная подстановка выражает рационально через *. Поэтому будем иметь где Замечание. Первую подстановку Эйлера можно брать и в виде Пример 6. Найти интеграл найдем Поэтому будем иметь dx подстановку Эйлера, показать, что У 8.2. Вторая подстановка Эйлера Пусть трехчлен ах2 + Ьх + с имеет различные действительные корни Я] и х2 (коэффициента может иметь любой знак). В этом случае полагаем Так как то получаем Так как x,dxn у/ах2 + be + с выражаются рационально через t, то исходный интеграл сводится к интегралу от рациональной функции, т. е. где Задача. Применяя первую подстановку Эйлера, показать, что - рациональная функция от t. Пример 7. Нейти интеграл dx М функция ] - х1 имеет различные действительные корни. Поэтому применяем вторую подстановку Эйлере Отсюда находим Подставляя найденные вырежения в Данный?в*гйвл; получим 8.3. ТретьяподстацомлЭйлера Пусть коэффициент с > 0. Делаем замену переменной, положив. Заметим, что для приведения интеграла к интегралу от рациональной функции достаточно первой и второй подстановок Эйлера. В самом деле, если дискриминант б2 -4ас > 0, то корни квадратного трехчлена ах +Ъх + с действител ьны, и в этом случае применима вторая подстановка Эйлера. Если, то знак трехчлена ах2 + Ьх + с совпадает со знаком коэффициента а, и так как трехчлен должен быть положительным, то а > 0. В этом случае применима первая подстановка Эйлера. Для нахождения интегралов указан ного выше вида не всегда целесообразно применять подстановки Эйлера, так какдля них можно найти и другие способы интегрирования, приводящие к цели быстрее. Рассмотрим некоторые из таких интегралов. 1. Для нахождения интегралов вида выделяют прлный квадрат из квадрата ого трехчлена: где После этого делают подстановку и получают где коэффициенты а и Р имеют разные знаки или они оба положительны. При, а также при а > 0 и интеграл сведется к логарифму, если же - к арксинусу. При. Найти имтегрел 4 Таккак то. полагая, получаем Прммар 9. Найти. Полагал x -, будем иметь 2. Интеграл вида приводится к интеграл у из п. 1 следующим образом. Учитывая, что производная ()" = 2, выделяем ее в числителе: 4 Выявляем в числителе производную подкоренного выражения. Так как (х, то будем иметь, учитывая результат примера 9, 3. Интегралы вида где Р„(х) - многочлен п-ой степени, можно находить методом неопределенных коэффициентов, который состоит в следующем. Допустим, что имеет место равенство Пример 10. Майти интеграл где Qn-i(s) -многочлен (n - 1)-ой степени с неопределенными коэффициентами: Для нахождения неизвестных коэффициентов | продифференцируем обе части (1): Затем правую часть равенства (2) приводим к общему знаменателю, равному знаменателю левой части, т.е. у/ах2 + Ьх + с, сокращая на который обе части (2), получим тождество в обеих частях которого стоят многочлены степени п. Приравнивая коэффициенты при одинаковых степенях х в левой и правой частях (3), получим n + 1 уравнений, из которых находим искомые коэффициенты j4*(fc = 0,1,2,..., п). Подставляя их значения в правую часть (1) и найдя интеграл + с получим ответ для данного интеграла. Пример 11. Найти интеграл Положим Дифференцируя обе масти равенства, будем иметь Приводя правую часть к общему знаменателе и сокращая на него обе части, получим тождество или. Приравнивая коэффициенты при одинаковых степенях х, придем к системе уравнений из которой находим = Затем находим интеграл, стоящий в правой части равенства (4): Следовательно, искомый интеграл будет равен



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!