Как работают спутники? Система управления для спутниковой системы связи и телеметрическая следящая и управляющая система связи Получить управление спутником.

Более года назад Беларусь получила в космическом пространстве свое второе «представительство» - спутник Белинтерсат-1 был выведен на орбиту китайской ракетой-носителем «Чаньчжэн-3В» (в переводе - «Великий поход»). От первого отечественного космического аппарата он отличается кардинально. В первую очередь по назначению, задача сателлита - оказывать телекоммуникационные услуги: Спутниковое теле- и радиовещание, доступ в интернет... Для управления спутником в Станьково был создан наземный комплекс управления и небольшой «космический городок». Накануне Дня космонавтики корреспонденты «Звязды» побывали в «белорусском Королёве» и понаблюдали, как аппаратом успешно управляют недавние студенты.

«Казармы» для инженеров

Это здание - бывшая казарма, - показывает на новенький трехэтажный дом начальник Центра управления полетом спутника Олег Винярский. - От нее оставили, по сути, только несущие конструкции, все остальное переделали. Получили 32 качественные современные квартиры, в них живут многие сотрудники ЦУП, в том числе и я. В общем, для работы центра здесь построили всю инфраструктуру. Мы имеем собственную подстанцию, которая питается от двух независимых городских линий. Даже если вдруг случится такое, что оба источника энергии выйдут из строя, у нас есть две автоматические дизель-генераторные установки, которые срабатывают через 6-8 секунд отсутствия питания. Есть и собственная котельная, которая обеспечивает теплой водой основное здание и общежитие, своя система пожаротушения в каждом помещении, свое кондиционирование, гаражи, склады... Проще говоря, мы можем работать абсолютно автономно даже в самых неблагоприятных условиях.

Зачем такие расходы? Все просто: одна из главных характеристик спутника связи - надежность. Заказчики, которые платят деньги за услуги Белинтерсат-1, должны быть уверены, что сигнал всегда стабильно дойдет до потребителя, независимо от внешних факторов. Кроме того, не секрет, что сателлит играет не последнюю роль в системе военной защиты страны.

Основное здание находится в нескольких шагах от общежития. За ним - идеально ровная площадка с газоном. Здесь располагается целый комплекс из огромных антенн, каждая из которых имеет свое назначение: 11-метровая для услуг DTH, проще говоря - спутникового телевещания, 13-метровая - для контроля качества сигнала в C-диапазоне и управления самим сателлитом, 9-метровая - для тех же целей в KU-диапазоне, еще две меньшего размера - для передачи данных, в том числе доступа в интернет. Таким образом, например, сотрудники белорусских посольств за рубежом могут всегда иметь безопасный доступ в интернет без посредников. Еще есть функции IP-телефонии и так называемого стриминга, или прямой трансляции видео в интернет - в последний раз ее использовали для показа чемпионатов по таэквондо.

Под каждой антенной находится техническое помещение, где установлены системы пожаротушения и контроля микроклимата. Есть здесь и своя метеостанция, так как погода может повлиять на оказание услуг - под воздействием температуры, ветра и влаги антенны искажают сигнал, это заставляет увеличивать мощность передатчика. В Станьково работает и собственная служба дератизации в лице... рыжего кота. Шутки шутками, но мыши представляют серьезную опасность для начиненного тысячами проводов здания, поэтому помощи со стороны усатого охранника здесь только рады.

Хьюстон, у нас нет проблем!

Если спутник БГА имеет собственную орбиту и траекторию движения, то Белинтерсат-1 находится на так называемой геостационарной орбите - то есть, он почти не движется относительно земной поверхности, так как его скорость равна скорости оборота планеты вокруг оси. Спутник находится за 36 тысяч километров над экватором примерно на 51,5 градуса восточной долготы (это район Индийского океана неподалеку от берегов Африки), а потому может передавать сигнал в любую точку Восточного полушария. Тем не менее сателлит требует постоянного присмотра, так как на него влияет гравитация самых различных объектов. Пять сотых градуса - именно такой «люфт» разрешен для Белинтерсат-1. В метрической системе это примерно 75 километров - не слишком много в орбитальных масштабах.

Именно надзором и манипуляциями с «курсом» спутника и занимается центр управления полетами. Достаточно большое помещение на первом этаже основного здания, конечно, вряд ли может сравниться с ЦУП в Королеве и Хьюстоне, но внешне все напоминает об этих знаковых для космонавтики местах: огромные часы со временем в разных поясах, ряды столов с множеством компьютеров (кстати, где еще в Беларуси найдешь клавиатуру без кириллицы, но с иероглифами), центральный монитор с картой мира и, конечно, внимательные сотрудники, которые следят за информацией на дисплее.

Моя работа заключается в мониторинге сведений со спутника - так называемой телеметрии, - объясняет инженер отдела анализа и планирования Валентина ПОПИША . - Анализируем ее за разные периоды, чтобы увидеть определенный тренд. Четыре раза за смену провожу проверку полезной нагрузки - все ли работает нормально, не превышают ли клиенты разрешенный уровень мощности. Но самое интересное - подготовка процедур по управлению спутником. Как раз сегодня будет одна из них - идет сезон затмений, и Солнце воздействует на земной датчик. Чтобы исключить возможность ошибок в замерах и перехода аппарата в аварийный режим, нам нужно будет отключить этот индикатор. Если спутник выходит из «бокса» - разрешенной траектории, проводим маневры для возвращения. Но случается это редко, в среднем раз в две недели.

Перед аналитиком - сразу четыре монитора, так как иногда приходится просматривать десятки графиков и таблиц. Работа, безусловно, напряженная, тем более, что одна смена здесь тянется сразу 12 часов.

Две ночные, две дневные смены, после чего - четыре дня выходных. Одновременно на перемене в ЦУП находится всего три специалисты, именно на их плечах лежит ответственность за «выживаемость» спутника. Всего же в наземном комплексе управления работает 52 человека.

Последней инстанции, принимающей окончательные решения, здесь не существует, - говорит Олег Винярский. - Все делается только коллегиально, потому что один человек всегда может ошибиться. Конечно, есть еще техподдержка производителя, куда можно обратиться за консультацией - они не заинтересованы в потере аппарата, так как для них это тоже вопрос имиджа.

Миллионы в руках молодежи

Первое, что бросается в глаза в наземном комплексе управления спутником, - средний возраст сотрудников. По словам Олега Винярского, это примерно 25 лет. Еще до запуска Белинтерсат-1 делегация из 25 человек отправилась на учебу в Китайскую аэрокосмическую академию. Там с ними работали создатели спутника, которые учили белорусов тонкостям «космического дела» на технике, близкой по характеристикам к будущему белорусского аппарата. Поэтому никакого мандража во время передачи управления в Станьково не было - опыта хватало у всех.

Что касается новых сотрудников, то в здании есть все для их обучения. Например, симулятор ЦУП - полная копия помещения, о котором шла речь выше. Единственное отличие - здесь правят не реальным спутником, а виртуальным. На улице есть такие же «тренировочные» антенны, на которых новички практикуются в настройке, выходе на связь со спутником и других процедурах.

Мы отслеживаем состояние оборудования на Белинтерсат-1, поддерживаем его работоспособность, работаем с клиентами, - говорит начальник отдела мониторинга и управления полезной нагрузкой Центра наземного применения спутника Юрий Бобров . - В первую очередь аппарат ориентирован на международный рынок, поэтому много общаемся с иностранцами. Без проблем берем на практику студентов, как раз сейчас стажируется молодежь из БГУ. Все это инженеры, которым нужно не только решать разного рода технические проблемы, но и работать с клиентами. Никаких проблем не возникает, многие ездят на стажировки за границу, поэтому опыта молодой команде хватает.

Белинтерсат-1 создан на китайской платформе DFH-4, но это не значит, что аппарат - чужая разработка.

Мы не просто эксплуатируем чужую технику, - объясняет начальник ЦУП. - Сотрудники принимали участие в создании этого здания вместе с китайцами, монтировали, подключали и тестировался оборудование, прокладывали кабели... Ездили на завод во время сборки спутника, инспектировали процесс производства, разговаривали с конструкторами, высказывали свои предложения. Поэтому и сам спутник, и наземный комплекс управления по полному праву могут считаться белорусскими.

Во время орбитальных маневров на мощном двигателе было использовано 60 процентов топлива - это неплохой показатель, так как двигатели малой тяги имеют гораздо меньший расход. Первоначально Белинтерсат-1 был рассчитан на 15 лет работы, но, по утверждению специалистов ЦУП, его может хватить и на больший срок - все благодаря экономному и сберегательному подходу во время маневров.

Если изначально спутник был во многом проектом престижа, то сейчас мы понимаем, что это неплохой способ получения денег, - говорит Олег Винярский. - Кроме того, если ты показываешь, что можешь оправдать такие большие вложения, дорожишь доверенным тебе оборудованием, умеешь им правильно пользоваться, то создаешь себе определенный имидж. Уже сейчас мы работаем над вопросом международного технического сотрудничества, имеем ряд подписанных меморандумов с Гонконгом, Нигерией, Казахстаном. Цель - рассказать о своем опыте и перенять зарубежный, ведь грош цена тем знаниям, которыми вы не готовы делиться. В будущем вообще планируем создать единую систему подготовки кадров, основанную на стажировке в зарубежных компаниях. Мы хотим, чтобы квалификационные требования были повсюду одинаковыми, и мы могли без проблем брать к себе на стажировку специалистов из-за рубежа и отправлять взамен своих. Таким образом, мы будем всегда обеспечены качественными кадрами, так же, как крупные космические державы, которые тратят на это много денег.

Спутник в формате «нано»

Наземная инфраструктура, которая была создана для обеспечения деятельности первого белорусского космического аппарата, может быть эффективно использована для управления эксплуатацией второго спутника дистанционного зондирования Земли, работа над которым уже началась. Об этом сообщил директор УП «Геоинформационные системы» Сергей ЗОЛОТОЙ. Работы по созданию ведутся совместно с Российской Федерацией, процесс проходит в штатном режиме, но о результатах говорить еще рано.

Еще в прошлом году мы начали выполнять проект по развитию наземной инфраструктуры, - сказал специалист. - Достаточно сказать, что приемная станция, которая была создана еще 12 лет назад, прошла процедуру продления срока эксплуатации и теперь может использоваться еще 10 лет. Для этого была проведена замена электроники и механических узлов, которые отработали свой ресурс. Все работы на сегодняшний день завершены.

Кроме того, по словам Сергея Золотого, в этом году Беларусь планирует запустить университетский наноспутник, разработанный в БГУ. Такой аппарат по техническим характеристикам похож на своих «больших братьев», но имеет небольшие размер (20x20x10 см) и вес (всего 2 кг). Соответственно, несравненно ниже и стоимость спутника. В БГУ создан центр управления и станция приема, работать техника будет в любительском радиодиапазоне.

Наша задача сейчас - не только создавать спутники, но и разрабатывать механизмы по применению этих технологий в различных ответвлениях, - подчеркнул руководитель аппарата Национальной академии наук, академик Петр ВИТЯЗЬ. - Мы кооперуемся с министерствами и ведомствами страны, взаимодействуем с 20 отечественными и 40 российскими предприятиями. Микроэлектроника, информационные технологии, новые материалы - это те направления, которые развиваются благодаря достижениям в космической сфере. Кроме того, нам вместе с Министерством образования нужно развивать систему подготовки кадров для этой ветви, в том числе и при помощи наноспутников

Минск - Дзержинский район - Минск

Фото Надежды БУЖАН

Пожалуй, одно из самых красивых зрелищ с высоты 500 километров (а именно на таком расстоянии летает большинство спутников для съемки земной поверхности) – это восход Солнца. Сначала появляется неясная оранжевая дымка, которая с каждой секундой становится все ярче, пока наконец не начнет напоминать экзотический цветок с желтой серединкой. Затем его сменяет белый круг, который корейский поэт Пак Чивон когда-то метко окрестил «колесом повозки», – и наконец Солнце восходит. Увидеть весь процесс в деталях возможно благодаря стартапу «Ойкумена» – разработке сотрудников Национальной академии наук Дениса Волонцевича и Виталия Вяльцева.

Нарисовать закат

За красивым древнегреческим названием, что переводится как «земля обитаемая», скрывается компьютерная программа, которая суперреалистично воспроизводит, как может перемещаться спутник, ракета или космический зонд в пределах Солнечной системы. Словно в компьютерной игре, пользователям предлагается выбрать космичес­кий аппарат и отправиться вместе с ним в путешествие по орбите.

Главная фишка в том, что все выглядит максимально достоверно: компьютерный симулятор основан на точной модели Солнечной системы, где все планеты и спутники движутся по законам небесной механики. Чтобы добиться 100-процент­ной реалистичности, Денис Волонцевич и Виталий Вяльцев писали программу и работали над графикой больше пяти лет. Большинство изображений – это реальные кадры, сделанные космическими аппаратами, проводит экскурсию по программе Виталий:

– «Картинки» звезд брал из каталога Тихо. Кое-что из атмосферных эффектов нарисовал сам, например, сияние атмосферы – вот этот тонкий голубой пояс вокруг планеты. А вот восход и закат Солнца, модели спутников – это дело рук Дениса.

Пользователи, успевшие протестировать «Ойкумену», порой интересуются: почему в программе нет звука? На самом деле, добавить его несложно, но не нужно, ведь космос – это абсолютная тишина.


Джойстик для космонавта

Просто летать над планетой было бы скучно, поэтому Денис и Виталий сделали так, чтобы виртуальным космическим аппаратом можно было управлять. В их программе спутник умеет разгоняться и притормаживать, переходить на другую орбиту и поворачиваться нужной стороной. Он приводится в движение с помощью двух джойстиков. Один (обычный игровой) купили в магазине, другой Денис Волонцевич собрал сам:

– Такие шестипозиционные джойстики уникальны, они используются в американских шаттлах и российских «Союзах». На сборку ушло два месяца: что-то из «начинки» заказывал за границей, что-то покупал в строительных магазинах. Обратите внимание: джойстик переключается из одной позиции в другую очень туго. Так и должно быть, ведь изначально он предназначал ся для космонавтов, которые работают в перчатках и скафандре.

Замахнулись на Луну

Пользуясь возможностью, прошу дать «порулить» спутником и мне. Хватаюсь за джойстики и… сразу же теряю космический аппарат из вида.

– Аккуратнее, пожалуйста. Космос большой, потом не найдем, – шутит Виталий.

Управление спутником идет сразу по девяти направлениям: за шесть из них отвечает левый джойстик и еще за три – правый. Мозг закипает: это все равно что ехать в авто, где установлены два руля, пять педалей и две коробки передач.


Пролетев со спутником над Африкой, сдаюсь и передаю бразды правления разработчикам.

Сейчас, пока идет Международный космический конгресс, ребята надеются показать свой продукт опытным космонавтам, чтобы они оценили, насколько компьютерная картинка соответствует реальному виду из космоса.

Уникальную программу можно использовать в качестве интерактивного аттракциона в научных музеях. А если доработать и добавить модели пилотируемых кораб­лей, у «Ойкумены» есть все шансы стать тренажером для обучения будущих космонавтов, рассуждают ученые:

– Планов много. Например, хотим, чтобы пользователи могли перемещаться не только вокруг Земли, но и вокруг нашего естественного спутника. Если все получится, через год слетаем на Луну!

Окно запуска - это такой период времени, когда наиболее просто разместить спутник на требуемую орбиту для того, чтобы он начал выполнять свои функции.

Например, очень важным фактором является выбор такого окна запуска, когда можно легко вернуть космонавтов обратно, если что-то пойдет не так. Космонавты должны иметь возможность достигнуть безопасной точки приземления, в которой кроме того, будет соответствующий персонал (никто же не хочет приземляться в тайге или Тихом океане). Для других типов запусков, включая межпланетные исследования, окно запуска должно позволить выбрать наиболее эффективный курс достижения очень далеких объектов. Если в расчетное окно запуска будет плохая погода или произойдут какие-то технические неполадки, то запуск стоит перенести в другое благоприятное окно запуска. Если спутник будет запущен пусть даже и в хорошую погоду, но в неблагоприятное окно запуска, то он может быстро закончить свою жизнь либо на неправильной орбите, либо в Тихом океане. В любом случае он не сможет выполнять требуемые функции. Время - наше все!

Что есть внутри типичного спутника?

Спутники бывают разные и имеют разное предназначение. Например:
  • Погодные спутники помогают синоптикам предсказывать погоду или просто видеть то, что происходит в данный момент. Вот типичные погодные спутники: EUMETSAT (Meteosat), США (GOES), Япония (MTSAT), Китай (Fengyun-2), Россия (GOMS) и Индия (KALPANA). Такие спутники, как правило, содержат фотокамеры, которые шлют на Землю снимки погоды. Как правило, такие спутники располагаются либо на геостационарной орбите, либо на полярных орбитах.
  • Спутники связи позволяют передавать через себя телефонные звонки и информационные соединения. Типичными коммуникационными спутниками являются Telstar и Intelsat. Самой главной частью спутника связи является транспондер - специальный радиопередатчик, который принимает данные на одной частоте, усиливает их и передает обратно на Землю на другой частоте. Спутник, как правило, содержит на борту сотни или даже тысячи транспондеров. Коммуникационные спутники чаще всего являются геосинхронными.
  • Телерадиовещательные спутники передают телевизионный (или радио) сигнал из одной точки в другую (так же как спутники связи).
  • Научно-исследовательские спутники выполняют различные научные функции. Самым известным является, пожалуй, космический телескоп Хаббл, однако, на орбите существует и множество других, которые наблюдает за всем чем только можно от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают навигации кораблей и самолетов. Самые известные из навигационных спутников - GPS и наш отечественный ГЛОНАСС.
  • Спасательные спутники реагируют на сигналы бедствия.
  • Спутники исследования Земли используются для исследования изменений на планете от температуры до предсказания таяниях полярных льдов. Самые известные из них спутники серии LANDSAT.
  • Военные спутники используются в военных целях и их назначение как правило засекречено. С появлением военных спутников стало возможным вести разведку прямо из космоса. Кроме того, военные спутники могут использоваться для передачи зашифрованных сообщений, ядерного мониторинга, изучения передвижений противника, раннего предупреждения о запуске ракет, прослушивания наземных линий связи, построение карт радаров, фотографирование (в том числе с использованием специальных телескопов для получения очень подробных картин местности).
Несмотря на существенные различия между всеми этими типами спутников, они имеют несколько общих вещей. Например:
  • Все они имеют металлический или композитный каркас и корпус. Корпус спутника содержи все необходимое для функционирования на орбите, в том числе до выживания.
  • Все спутники имеют источник энергии (как правило - солнечные батареи) и аккумуляторы для запасов энергии. Набор солнечных батарей обеспечивают электроэнергию для подзарядки батарей. Некоторые новые спутники также содержат и топливные ячейки. Электроснабжение на большинстве спутников очень ценный и ограниченный ресурс. На некоторых космических зондах применяется ядерная энергия. Энергосистема спутников постоянно наблюдается, и собранные данные по энергомониторингу и мониторингу других систем посылаются на Землю в форме телеметрических сигналов.
  • Все спутники содержат бортовой компьютер для управления и мониторинга различных систем.
  • Все они имеют радиопередатчик и антенну. В самом минимуме все спутники имеют приемопередатчик, с помощью которого наземная команда управления может запращивать информацию со спутника и наблюдать его состояние. Многими спутниками можно управлять с Земли для выполнения различных задач от смены орбиты до перепрошивки бортового компьютера.
  • Все они содержат систему управления положением. Такая система предназначена для сохранения ориентации спутника в правильном направлении.
Например, телескоп Хаббл имеет очень сложную систему управления, которая позволяет направлять телескоп в одну точку в космосе в течении часов или даже дней (несмотря на то, что телескоп движется по орбите со скоростью 27 359 км/ч). Система включает гироскопы, акселлерометры, системы стабилизации, ускорите или набор датчиков, которые наблюдают за некоторыми звездами для определения местоположения.

Какие типы орбит спутников бывают?

Существуют три основные типы орбиты, и зависят от они от положения спутника относительно поверхности Земли:
  • Геостационарная орбита (еще ее называют геосинхронной или просто синхронной) - это такая орбита, двигаясь по которой спутник всегда находится над одной и той же точкой на поверхности Земли. Большинство геостационарных спутников находится над экватором на высоте около 36000 км, что составляет примерно десятую часть от расстояния до Луны. «Место парковки спутников» над экватором становится перегруженным несколькими сотнями телевизионных спутников, погодных и спутников связи! Эта перегруженность означает, что каждый спутник должен точно управляться для предотвращения перекрытия его сигнала с сигналами соседних спутников. Телевизионные, коммуникационные и погодные спутники - всем нужна геостационарная орбита. Поэтому все спутниковые тарелки на поверхности Земли смотрят всегда в одну сторону, в нашем случае (северное полушарие) на юг.
  • Космические запуски обычно используют более низкую орбиту, что приводит к тому, что они пролетают над различными точками в различные моменты времени. В среднем высота асинхронной орбиты составляет примерно 644 километра.
  • На полярной орбите спутник обычно находится на малой высоте и проходит через полюса планеты при каждом обороте. Полярная орбита остается неизменной в космосе при вращении Земли по орбите. В результате большая часть Земли проходит под спутником, находящимся на полярной орбите. Из-за того что полярная орбита дает наибольшее покрытие поверхности Земли, ее часто используют для спутников, которые производят картографирование (например, для Google Maps).
Как рассчитывают орбиты спутников?

Для расчета орбиту спутников используется специальное программное обеспечение для компьютеров. Эти программы используют Кеплеровские данные для расчета орбиты и момента, когда спутник будет «над головой». Кеплеровские данные доступны в Интернете и для любительских радиоспутников.

Спутники используют ряд чувствительных к свету датчиков для определения собственного местоположения. После этого спутник передает полученную позицию на наземную станцию управления.

Высоты спутников

Остров Манхэттен, изображение с GoogleMaps

Если смотреть с Земли, спутники летают на разных высотах. Лучше всего думать о высотах спутников в терминах «как близко» или «как далеко» они от нас. Если рассматривать грубо, от самых близких до самых далеких, то получим следующие типы:

От 100 до 2000 километров - Асинхронные орбиты

Наблюдательные спутники обычно располагаются на высотах от 480 до 970 километров, и используются для таких задач как фотографирование. Наблюдательные спутники типа Landsat 7 выполняют следующие задачи:

  • Картографирование
  • Наблюдение за движением льда и песка
  • Определение местоположения климатических ситуаций (как например, исчезновение тропических лесов)
  • Определение местоположения полезных ископаемых
  • Поиск проблем с урожаем на полях
Поисково-спасательные спутники работают как передающие станции для ретрансляции сигналов бедствия с упавших самолетов или терпящих бедствия кораблей.

Космические аппараты (например, шаттлы) являются управляемыми спутниками, как правило, с ограниченным временем полета и рядом орбит. Космические запуски с участием людей как правило применяются при ремонте уже существующих спутников или при строительстве космической станции.

От 4 800 до 9 700 километров - Асинхронные орбиты

Научные спутники иногда располагаются на высотах от 4 800 до 9 700 километров. Они отправляют полученные ими научные данные на Землю с помощью радио-телеметрических сигналов. Научные спутники применяются для:

  • Изучения растений и животных
  • Исследование Земли, как например, наблюдение за вулканами
  • Отслеживание дикой природы
  • Астрономических исследований, включая инфракрасные астрономические спутники
  • Исследований в области физики, как например, исследования NASA в области микрогравитации или исследования солнечной физики
От 9 700 до 19 300 километров - Асинхронные орбиты

Для навигации, американское оборонное ведомство и российское правительство создали навигационные системы, GPS и ГЛОНАСС соответственно. Навигационные спутники используют высоты от 9 700 до 19 300 километров, и применяются для определения точного местоположения приемника. Приемник может располагаться:

  • В корабле на море
  • В другом космическом аппарате
  • В самолете
  • В автомобиле
  • У вас в кармане
Так как цены на потребительские навигационные приемники имеют тендецию к снижению, обычные бумажные карты столкнулись с очень опасным противником. Теперь вам будет сложнее потеряться в городе и не найти нужную точку.

Интересные факты о GPS:

  • Американские войска во время операции «Буря в пустыне» использовали более 9 000 GPS приемников.
  • Национальное управление океанических и атмосферных исследований (NOAA) США использовало GPS для измерения точной высоты монумента Вашингтона.
35 764 километров - Геостационарные орбиты

Погодные прогнозы обычно демонстрируют нам изображения со спутников, которые как правило находятся на геостационарной орбите на высоте 35 764 километра над экватором. Вы можете получить напрямую некоторые такие изображения с помощью специальных приемников и компьютерного программного обеспечения. Многие страны используют погодные спутники для предсказания погоды и наблюдения за штормами.

Данные, телевизионные сигнал, изображения и некоторые телефонные звонки аккуратно принимаются и ретранслируются коммуникационными спутниками. Обычные телефонные звонки могут иметь от 550 до 650 миллисекунд задержки на прохождение сигнала туда и обратно, что приводит к неудовольствию пользователя. Задержка возникает из-за того, что сигнал должен дойти вверх до спутника и затем вернуться на Землю. Поэтому из-за такой задержки, многие пользователи предпочитают пользоваться спутниковой связью только в том случае, если нет других вариантов. Однако, VOIP (голос через интернет) технологии встречаются сейчас с похожими проблемами, только в их случае они возникают из-за цифровой компрессии и ограничений пропускной способности, нежели из-за растояния.

Коммуникационные спутники являются очень важными ретрансляционными станциями в космосе. Спутниковые тарелки становятся меньше, потому что спутниковые передатчики становятся более мощными и направленными. С помощью таких спутников передаются:

  • Новостные ленты агентств
  • Биржевая, бизнес и другая финансовая информация
  • Международные радиостанции переходят с коротковолнового (или дополняют его) спутниковым вещанием с использованием микроволнового восходящего сигнала
  • Глобальное телевидение, такое как CNN и BBC
  • Цифровое радио

Сколько стоят спутники?

Запуск спутников не всегда проходит удачно. Вспомните провал запуска трех спутников ГЛОНАСС или например ФОБОС-ГРУНТ. На самом деле спутники стоят достаточно дорого. Стоимость тех упавших спутников ГЛОНАСС составляла несколько миллиаров рублей.

Другой важный фактор в стоимости спутников - это стоимость запуска. Стоимость запуска спутника на орбиту может варьироваться между 1.5 и 13 миллиардов рублей. Запуск американских шаттлов может достигать до 16 миллиардов рублей (полмиллиарда долларов). Построить спуник, вывести его на орбиту и затем управлять им - это очень дорогое удовольствие!

Продолжение следует…

Спутники - уникальная особенность «Джаггернаута» , не имеющая аналогов в других браузерных играх. Это напарники, которых игроки могут призвать во время боя, получая неоспоримое преимущество над противником.

Меню спутников открывается при нажатии на иконку с изображением спутника, которая находится справа от верхней игровой панели :

Там же отображаются все доступные игроку спутники. Каждый игрок может одновременно призвать до пяти спутников . Любого из них при желании можно переименовать .

Первым спутником станет воинственная амазонка 15-го уровня по имени Ариана . В дальнейшем будут появляться новые спутники различных уровней и силы. Будут отличаться и их способности, а также стоимость призыва в бой. Стоимость вызова спутника зависит от разницы в уровнях между игроком и спутником. При равных уровнях стоимость призыва амазонки - 25 золотых . Если спутник намного меньше игрока по уровню - стоимость его призыва уменьшается, если спутник выше игрока - увеличивается.

Участвуя в боях против монстров , спутник получает опыт , в боях против игроков - опыт и героизм , количество которого зависит от нанесённого спутником урона . Одна из ключевых особенностей спутников в том, что игрок может присвоить себе их героизм и опыт . С помощью ползунков можно настроить, сколько опыта или героизма получит за свои действия спутник и сколько из них перейдёт игроку.

С помощью специальных артефактов можно увеличивать общее количество опыта и героизма , получаемого спутником.

Кроме артефактов спутник может носить ювелирные изделия (две серьги, два кольца, амулет) и специальные доспехи, доступные при достижении спутником 18-го, 23-го, 28-го, 33-го, 38-го и 43-го уровней.

С получением каждого уровня, спутник получает определенное количество очков распределения , которые можно вкладывать в развитие той или иной характеристики спутника . Каждая характеристика имеет свою стоимость повышения. Для повышения Силы на один пункт нужно потратить 4 очка распределения, единица Живучести требует 5 очков, а классовые характеристики - по 6.

Таким образом, каждый сможет сделать из своего спутника подходящего по характеристикам компаньона . Игрок сможет перераспределить характеристики в любой момент, нажав на кнопку «Сбросить». За каждый сброс характеристик взимается плата.

У спутников также существует система званий . Система достижения званий схожа с такой же системой у игроков: при накоплении определенного количества героизма спутник получает определенное звание. Каждое звание даёт спутнику доступ к новым способностям, усиливающим его. Звания доступны для спутника вне зависимости от его уровня . Так, амазонка 15-го уровня может иметь максимально возможное звание.

После достижения определённого звания и связанной с ним способности, спутник будет с определённой вероятностью использовать эту способность в бою. Чем выше звание - тем более значимую пользу приносит способность спутника . При высоких званиях спутник сможет накладывать усиливающие заклинания на участников группы и исцелять их.

Для призыва спутника в бой необходимо нажать на соответствующую кнопку, которая находится над панелью вызова фантомов . При этом спутник зайдет в бой, а по окончании боя с игрока будет снята суммарная стоимость призыва всех спутников, задействованных в этом бою.

У каждого спутника есть энергия . Эта энергия тратится при вызове спутницы в бой. Если энергии на вызов недостаточно, то за вызов спутницы придётся заплатить золотом. Количество энергии или стоимость вызова можно увидеть наведя мышку на иконку спутницы. Имейте ввиду что в ПВП боях и инстансах спутниц можно вызвать исключительно за золото, а в полях битв спутниц использовать нельзя.

В «Джаггернауте» будут появляться всё новые спутницы, каждая из которых будет обладать своей историей, индивидуальным характером и уникальными способностями. Спешите пополнить свою личную армию прекрасными воительницами , которые помогут вам одержать новые победы!

«Человек должен подняться над Землей - в атмосферу и за ее пределы - ибо только так он полностью поймет мир, в котором живет».

Сократ сделал это наблюдение за века до того, как люди успешно вывели объект на земную орбиту. И все же древнегреческий философ, кажется, понял, насколько ценным может быть вид из космоса, хотя совершенно не знал, как этого достичь.

Этому понятию - о том, как вывести объект «в атмосферу и за ее пределы» - пришлось ждать до тех пор, пока Исаак Ньютон не опубликовал свой знаменитый мысленный эксперимент с пушечным ядром в 1729 году. Выглядит он примерно так:

«Представьте, что вы поместили пушку на вершину горы и выстрелили из нее горизонтально. Пушечное ядро будет путешествовать параллельно поверхности Земли некоторое время, но в конечном счете уступит силе тяжести и упадет на Землю. Теперь представьте, что вы продолжаете добавлять порох в пушку. С дополнительными взрывами ядро будет путешествовать дальше и дальше, пока не упадет. Добавьте нужное количество пороха и придайте ядру правильное ускорение, и оно будет постоянно лететь вокруг планеты, всегда падая в гравитационном поле, но никогда не достигая земли».

В октябре 1957 года Советский Союз наконец подтвердил догадку Ньютона, запустив «Спутник-1» - первый искусственный спутник на орбите Земли. Это инициировало космическую гонку и многочисленные запуски объектов, которым предназначалось летать вокруг Земли и других планет Солнечной системы. С момента запуска «Спутника» некоторые страны, по большей части США, Россия и Китай, запустили более 3000 спутников в космос. Некоторые из этих сделанными людьми объектов, например МКС, большие. Другие отлично умещаются в небольшом сундучке. Благодаря спутникам мы получаем прогнозы погоды, смотрим телевизор, сидим в Интернете и звоним по телефону. Даже те спутники, работу которых мы не ощущаем и не видим, отлично служат в пользу военных.

Конечно, запуск и эксплуатация спутников привели к проблемам. Сегодня, учитывая более 1000 рабочих спутников на земной орбите, наш ближайший космический район стал оживленнее, чем крупный город в час пик. Приплюсуйте к этому нерабочее оборудование, заброшенные спутники, части аппаратного обеспечения и фрагменты от взрывов или столкновений, которые наполняют небеса вместе с полезным оборудованием. Этот орбитальный мусор, о котором мы , накапливался на протяжении многих лет и представляет серьезную угрозу для спутников, в настоящее время кружащим вокруг Земли, а также для будущих пилотируемых и непилотируемых запусков.

В этой статье мы залезем в кишки обычного спутника и заглянем в его глаза, чтобы увидеть виды нашей планеты, о которых Сократ и Ньютон не могли и мечтать. Но сначала давайте подробнее разберемся, чем, собственно, спутник отличается от других небесных объектов.


- это любой объект, который движется по кривой вокруг планеты. Луна - это естественный спутник Земли, также рядом с Землей находится множество спутников, сделанных руками человека, так сказать, искусственных. Путь, по которому следует спутник, это орбита, иногда принимающая форму окружности.

Чтобы понять, почему спутники движутся таким образом, мы должны навестить нашего друга Ньютона. Он предположил, что сила гравитации существует между двумя любыми объектами во Вселенной. Если бы этой силы не было, спутники, летящие вблизи планеты, продолжали бы свое движение с одной скоростью и в одном направлении - по прямой. Эта прямая - инерционный путь спутника, который, однако, уравновешивается сильным гравитационным притяжением, направленным к центру планеты.

Иногда орбита спутника выглядит как эллипс, приплюснутый круг, который проходит вокруг двух точек, известных как фокусы. В этом случае работают все те же законы движения, разве что планеты расположены в одном из фокусов. В результате, чистая сила, приложенная к спутнику, не проходит равномерно по всему его пути, и скорость спутника постоянно меняется. Он движется быстро, когда находится ближе всего к планете - в точке перигея (не путать с перигелием), и медленнее, когда находится дальше от планеты - в точке апогея.

Спутники бывают самых разных форм и размеров и выполняют самые разнообразные задачи.

  • Метеорологические спутники помогают метеорологам прогнозировать погоду или видеть, что происходит с ней в данный момент. Геостационарный эксплуатационный экологический спутник (GOES) представляет хороший пример. Эти спутники обычно включают камеры, которые демонстрируют погоду Земли.
  • Спутники связи позволяют телефонным разговорам ретранслироваться через спутник. Наиболее важной особенностью спутника связи является транспондер - радио, которое получает разговор на одной частоте, а после усиливает его и передает обратно на Землю на другой частоте. Спутник обычно содержит сотни или тысячи транспондеров. Спутники связи, как правило, геосинхронные (об этом позже).
  • Телевизионные спутники передают телевизионные сигналы из одной точки в другую (по аналогии со спутниками связи).
  • Научные спутники, как некогда космический телескоп Хаббла, выполняют все виды научных миссий. Они наблюдают за всем — от солнечных пятен до гамма-лучей.
  • Навигационные спутники помогают летать самолетам и плавать кораблям. GPS NAVSTAR и спутники ГЛОНАСС - яркие представители.
  • Спасательные спутники реагируют на сигналы бедствия.
  • Спутники наблюдения за Землей отмечают изменения — от температуры до ледяных шапок. Наиболее известные - серия Landsat.

Военные спутники также находятся на орбите, но большая часть их работы остается тайной. Они могут ретранслировать зашифрованные сообщения, осуществлять наблюдение за ядерным оружием, передвижениями противника, предупреждать о запусках ракет, прослушивать сухопутное радио, осуществлять радиолокационную съемку и картографирование.

Когда были изобретены спутники?


Возможно, Ньютон в своих фантазиях и запускал спутники, но прежде чем мы на самом деле совершили этот подвиг, прошло немало времени. Одним из первых визионеров был писатель-фантаст Артур Кларк. В 1945 году Кларк предположил, что спутник может быть размещен на орбите так, что будет двигаться в том же направлении и с той же скоростью, что и Земля. Так называемые геостационарные спутники можно было бы использовать для связи.

Ученые не понимали Кларка - до 4 октября 1957 года. Тогда Советский Союз запустил «Спутник-1», первый искусственный спутник, на орбиту Земли. «Спутник» был 58 сантиметров в диаметре, весил 83 килограмма и был выполнен в форме шарика. Хотя это было замечательное достижение, содержание «Спутника» было скудным по сегодняшним меркам:

  • термометр
  • батарея
  • радиопередатчик
  • газообразный азот, который был под давлением внутри спутника

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?


Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?


Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?


Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников


На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники


До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?


После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников


Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!