Описание установки жидкостного охлаждения на компьютер. Водяное охлаждение для ПК: как установить самому

Развитие технологий неизбежно приводит к тому, что основные компоненты персональных компьютеров становятся более производительными, а значит, и «горячими». Для станций требуется высокоэффективное охлаждение. В качестве отличного варианта для решения такой задачи можно предложить для ПК.

Основные преимущества

Подобная система имеет целый ряд преимуществ в сравнении с традиционным воздушным охлаждением. В первую очередь следует помнить о высокой теплопроводности воды в сравнении с воздухом, а это сказывается положительно на всей системе охлаждения. Следующий нюанс касается высокопроизводительных кулеров, которые создают много шума при прохождении больших масс воздуха. С водяным охлаждением уровень шума минимизируется во время работы всей системы. Современное водяное охлаждение для ПК характеризуется простотой установки при высочайшей производительности. При том, что такая система стоит довольно дорого, она становится выбором очень многих, то есть ее популярность неустанно растет.

Общая характеристика

Водяная система охлаждения для ПК представляет собой совокупность элементов, используемых для переноса воды в качестве теплоносителя. От традиционной воздушной она отличается тем, что все тепло сначала передается воде, а потом уже воздуху. При использовании такой системы все тепло, вырабатываемое процессором и остальными тепловыделяющими элементами, передается посредством специального теплообменника воде. Этот компонент называется ватерблоком. Вода, которая нагрелась таким образом, переносится в следующий теплообменник - радиатор, где ее тепло передается воздуху, покидая пределы компьютера. За движение воды в системе отвечает специальный насос, который обычно называют помпой.

Установка водяного охлаждения для ПК дает массу преимуществ за счет того, что выше, чем воздуха, благодаря чему обеспечивается более эффективный и быстрый отвод тепла от охлаждаемых элементов, а значит, и более низкие температуры. При всей совокупности равных условий данный тип всегда будет намного эффективнее в сравнении со всеми остальными.

Водяная система охлаждения (для ПК и пр.) показала себя довольно надежным и производительным решением за все время его использования. Даже при применении в различных системах, устройствах и механизмах, которые требовательны к надежности и мощности охладителей, к примеру, в двигателях внутреннего сгорания, радиолампах, мощных лазерах, станках на заводах, АЭС и прочих.

Компьютер и водяное охлаждение

Высокая эффективность такой системы позволяет не только добиться более мощного охлаждения, способного положительно сказаться на стабильности и разгоне системы, но и понизить уровень шума компьютера. Можно собрать такую систему, чтобы обеспечить разогнанному компьютеру работу при минимальном уровне создаваемого шума. Именно эта причина делает такие системы особо актуальными для пользователей мощнейших компьютеров, любителей сильного разгона, желающих сделать свой ПК тише, но не желающих идти на компромисс с мощностью.

Нередко геймеры устанавливают себе трех-четырех чиповые видеоподсистемы, при этом работа видеокарт осуществляется с высокой температурой и частыми перегревами, а также с сильным шумом используемых систем охлаждения. Может даже показаться, что для современных видеокарт проектируются такие охладители, которые не позволят использовать мультичиповые конфигурации. Именно поэтому в случаях установки видеокарт одна возле другой часто возникает целый ряд проблем, ведь им просто неоткуда черпать холодный воздух. На рынке имеются альтернативные системы воздушного охлаждения, предназначенные для мультичиповых конфигураций, однако и они не спасают положение. Именно водяное охлаждение ПК в данном случае способно радикально исправить ситуацию, то есть понизить температуру, улучшить стабильность и повысить надежность работы компьютера.

Компоненты водяного охлаждения

В данную систему входит определенный набор компонентов, которые условно делятся на обязательные и необязательные, то есть устанавливаемые по желанию.

Итак, обязательные комплектующие для водяного охлаждения ПК включают: ватерблок, помпу, радиатор, фитинги, шланги, воду. При том, что список необязательных элементов можно расширить, обычно в него включаются: термодатчики, резервуар, сливные краны, контроллеры вентилятора и помпы, измерители и индикаторы, второстепенные ватерблоки, бэкплейты, присадки к воде, фильтры. Для начала следует рассмотреть компоненты, без которых водяное охлаждение для ПК попросту не станет работать.

Ватерблоки

Ватерблок представляет собой специальный теплообменник, посредством которого тепло от греющегося элемента передается воде. Чаще всего его конструкция предполагает наличие медного основания, а также пластиковой или металлической крышки с набором креплений, предназначенных для закрепления ватерблока на охлаждаемом элементе. Для всех тепловыделяющих компонентов компьютера существуют ватерблоки, даже для тех, на которые они не особо требуются, то есть их производительность от этого сильно не возрастет. К основным и наиболее востребованным элементам можно отнести процессорные ватерблоки, ватерблоки для видеокарт и системных чипов. Приспособления для видеокарт бывают двух типов: закрывающие только сам графический чип, закрывающие все элементы видеокарты, которые при работе нагреваются.

При том, что изначально такие элементы делались из толстых листов меди, современные тенденции в данной области привели к тому, что основания ватерблоков теперь делают тонкими, чтобы от процессора к воде тепло передавалось намного быстрее. Помимо этого увеличение поверхности теплопередачи достигается за счет микроигольчатых и микроканальных структур.

Радиаторы

В системах водяного охлаждения радиатором называется водно-воздушный теплообменник, передающий воздуху тепло от воды, которое набирается в ватерблоке. Существует два подтипа радиаторов в таких системах: пассивные, то есть не оснащенные вентилятором, и активные, то есть их продувает вентилятор.

Итак, если вас интересует установка водяного охлаждение для ПК, то стоит отметить, что безвентиляторные радиаторы встречаются не так часто, так как их эффективность заметно ниже, что характерно для всех видов пассивных систем. Помимо низкой производительности, такие радиаторы характеризуются большими габаритами, из-за чего они редко помещаются даже в модифицированные корпуса.

Продуваемые радиаторы, то есть активные, являются более распространенными в компьютерных системах водяного охлаждения, так как их эффективность заметно выше. В случае применения бесшумных или тихих вентиляторов можно добиться бесшумной или тихой работы всей охлаждающей системы, то есть позаимствовать основное достоинство пассивного охлаждения.

Помпа

Помпа представляет собой электрический насос, задачей которого является обеспечение циркуляции воды в системе охлаждения компьютера, без него вся конструкция просто не будет работать. Помпы могут работать как от 220 вольт, так и от 12 вольт. Поначалу, когда в продаже почти не встречалось помп для таких установок, энтузиастами использовались аквариумные помпы, работающие от городской сети, что создавало некоторые трудности, так как их нужно было включать синхронно с компьютером. Для этих целей обычно использовались реле, включающие помпу автоматически при старте компьютера. Развитие систем водяного охлаждения дало возможности для появления новых приспособлений, которые при питании от компьютерных 12 вольт обладали высокой производительностью при компактных размерах.

Так как современные ватерблоки характеризуются очень высоким коэффициентом водного сопротивления, а это ведь плата за высокую производительность, с ними рекомендуется использовать мощные помпы. Это связано с тем, что с даже наиболее мощным, современная водная система охлаждения для ПК не полностью продемонстрирует свою производительность. Не стоит особо гнаться за мощностью, применяя в одном контуре несколько помп или насосы от отопительных систем, так как это не приведет к повышению производительности всей системы в целом. Этот параметр ограничивается эффективностью ватерблока и теплорассеивающей способность радиатора.

Шланги

ПК с водяным охлаждением просто немыслим без применения шлангов или трубок, так как именно они соединяют разные компоненты системы между собой. Чаще всего для компьютеров используются шланги из ПВХ, в крайнем случае, из силикона. Размер шланга не оказывает влияния на производительность, тут главное - не выбирать слишком тонкие, то есть диаметром менее 8 мм.

Фитинги

С помощью фитингов производится подключение шлангов к компонентам системы охлаждения. Их вкручивают в отверстие с резьбой на компоненте без применения так как в качестве уплотнения соединения используются резиновые кольца. Сейчас подавляющее большинство компонентов поставляется без фитингов. Сделано это для того, чтобы у пользователя была возможность самостоятельно подобрать подходящий для себя вариант, ведь они существуют разных типов и под разные размеры шлангов. Наиболее популярным типом являются а также фитинги-елочки. Они могут быть прямыми или угловыми, а устанавливаются в зависимости от того, как производится установка водяного охлаждения на ПК.

Вода

Если вы хотите сделать игровой ПК с водяным охлаждением, то должны понимать, что для этих целей требуется брать дистиллированную воду, то есть избавленную от каких-либо примесей. На западных сайтах иногда пишут о необходимости использования но она отличается от дистиллированной только способом подготовки. Иногда воду заменяют специальными смесями или добавляют в нее присадки. В любом случае не рекомендуется использовать воду из под крана или бутилированную.

Необязательные компоненты

Обычно и без них система водяного охлаждения ПК работает вполне стабильно и без проблем. Основной смысл использования необязательных компонентов состоит в том, чтобы сделать систему более удобной в эксплуатации, либо они служат в качестве декора.

Итак, если вас заинтересовала установка водяного охлаждения на ПК своими руками, то вы можете использовать помимо основных компонентов и дополнительные, первым из которых является резервуар, или Чаще всего вместо него для удобной заправки системы используется фитинг-тройник и заливная горловина. Преимущество варианта без резервуара состоит в том, что при установке системы в компактный корпус ее можно разместить гораздо удобнее. Установка водяного охлаждение на ноутбуке может потребовать наличия резервуара для обеспечения удобства заправки и более удобного удаления воздушных пузырей из системы. Не принципиально, каким объемом характеризуется резервуар, так как он не оказывает воздействия на производительность системы. Выбор размера и формы расширительного бачка зависит только от индивидуальных предпочтений и внешнего вида.

Представляет собой компонент, обеспечивающий удобство слива воды из системы охлаждения. Он в обычном состоянии перекрыт. Этот компонент способен сильно повысить удобство пользования в плане обслуживания.

Индикаторы, датчики и измерители выпускаются специально для тех, кто не может остановиться на минимуме компонентов, а любит различные излишества. В их числе представлены электронные датчики потока и давления воды, температуры воды, контроллеры, которые подстраивают работу вентиляторов под температуру, контроллеры помп, механические индикаторы и прочие.

Фильтр встречается в некоторых системах водяного охлаждения, где его подключают к контуру. Он занят тем, что отфильтровывает разнообразные механические частицы, которые оказались в системе - это пыль, которая могла присутствовать в шлангах, осадок, появившийся из-за использования антикоррозионной добавки или красителя, остатки пайки в радиаторе и прочее.

Внешняя или внутренняя СВО?

Если вам интересно, как установить водяное охлаждение на ноутбуке, то тут стоит сначала сказать о наличии двух видов систем. Внешние обычно выполняются в виде отдельного ящика, то есть модуля, который подключается к ватерблокам посредством шлангов. В корпусе внешней системы обычно находится радиатор с вентиляторами, резервуар, помпа, а иногда и блок питания для помпы с температурными датчиками. Понятно, что такой вариант оптимален для ноутбука, так как корпус лэптопа не позволит разместить это все в нем. Для компьютера такие системы удобны тем, что пользователю не потребуется дорабатывать корпус своего ПК, но неудобны, если вы решите переставить прибор в другое место.

Существует внутреннее водяное охлаждение для ПК. Установить самому такую систему довольно сложно, если сравнивать ее с внешней. Среди плюсов подобной системы отмечается удобство при необходимости переноски компьютера в другое место, так как для этого не потребуется сливать всю жидкость. Еще одно достоинство состоит в том, что внешний вид корпуса при этом никак не изменится, а при правильном моддинге такая система послужит еще и украшением.

Готовые системы или персональная сборка?

Можно сделать водяное охлаждение ПК своими руками, используя для этого отдельные компоненты, а можно воспользоваться уже готовыми решениями, которые сопровождают подробнейшие инструкции. Большинство энтузиастов убеждено, что решения «из коробки» характеризуются низкой производительностью, однако это совсем не так. Многими марками выпускаются комплекты с высокой производительностью, к примеру, Danger Dan, Alphacool, Koolance, Swiftech. В числе преимуществ готовых систем отмечается удобство, так как в одном наборе имеется все необходимое для установки. Помимо того производители часто нацелены на то, чтобы помочь пользователям в любых сложившихся обстоятельствах, поэтому в комплект входят разнообразные элементы и крепления. Однако неудобно, что у пользователя отсутствует возможность выбрать именно те компоненты, которые ему необходимы, системы продаются только в сборе.

Можно и самостоятельно сделать водяное охлаждение для ПК. Отзывы большинства опытных пользователей говорят о том, что в этом случае система будет более гибкой, так как вы сможете подобрать компоненты, подходящие именно вам. Кроме того, если составлять систему из отдельных компонентов, можно иногда сэкономить. Минусом такого подхода является сложность сборки, особенно для новичков.

Выводы

В качестве основных плюсов систем водяного охлаждения можно назвать возможность сборки мощного и тихого ПК, расширение возможностей в плане разгона, улучшение стабильности при разгоне, продолжительный срок эксплуатации и прекрасный внешний вид. Такое решение позволяет собрать мощный игровой компьютер, который будет работать без лишнего шума, что совершенно недостижимо для воздушных систем.

В числе минусов обычно отмечается сложность сборки, ненадежность и дороговизну. Однако такие недостатки можно назвать спорными и относительными. В плане сложности сборки можно отметить, что это не намного сложнее, чем собирать сам компьютер. К надежности правильно собранных систем тоже нет претензий, так как при условии правильной сборки и эксплуатации проблем не возникает.

Как полностью cвоими руками сделать систему водяного охлаждения компа


все в рабочем состоянии

Современные процессоры, графические или основные, становятся все мощнее. С прилагающимися кулерами, температура даже в простое может превышать 60 градусов. А как шумят вентиляторы! Поэтому появилось выражение:»Видеокарта пошла на взлет”))
Но есть альтернативное решение.

Инструкция

Уровень сложности: Непросто

Что вам понадобится:

  • Лист меди/алюминия, толщиной 1мм
  • Клей момент, нужен по-любому, может пригодиться и
  • Герметик
  • антенны от старых (или новых) радиоприемников
  • шланг ПВХ
  • аквариумная помпа
  • бутылка
  • монитор с помойки (ЭЛТ)

1 шаг

Садимся за стол.
Замеряем извлеченный из компа (будьте осторожны) процессор линейкой. Прикидываем размер будущего водоблока, он должен покрывать всю крышку процессора, но излишек большим быть не должен.
Допустим, 4см на 4см.

2 шаг

Разбираем старый монитор, в нем есть разные радиаторы, выберите самый близкий к размеру процессора. Помните, лучше излишек, чем недостаток. В радиаторе есть дырочка для болта, которым крепится транзистор. Изнутри ее залейте клеем, снаружи обмажьте термопастой (не в процессе сборки, конечно)) если размеры радиатора позволяют, можно вкрутить туда тот болт, обмазав клеем, процессор будет не на нем стоять, а на свободном месте). Свободное место зашкурить на доске самой мелкой шкуркой.

3 шаг

Из листа металла вырезаем крышку для радиатора, загибаем «крылышки”, которые будут прикрывать бока радиатора. «Крылышки” рисовать с учетом высоты ребер радиатора. Вырезаем, загибаем (в тисках под 90 гр), подставляем к радиатору, т.е. днищу. Вместо радиатора, если не нашли, можно использовать такую же крышку, только высота будущего водоблока должна быть минимальной.

4 шаг

Таким же образом выполняем детали водоблоков GPU , северного моста, только для них можно обойтись и без радиаторов, для видеокарты можно днище чуть поцарапать изнутри.
Вкладываем детали друг в друга, закрепляем в таком положении тисками,заливаем швы клеем, оставив маленькую дырочку, размер ее не принципиален, но чем меньше, тем лучше. Изнутри швы можно промазать герметиком)))

5 шаг

Для наглядности ребра… гм… в другой проекции

После высыхания деталей (через двое суток) берем антенну, разламываем сильным раздвижением. Самую толстую трубку раскусываем: если короткая, то на 2 части, если длинная, то на 4 (кусачками раскусываем, а не зубами).
Берем сверло по толщине трубки, сверлим в CPU -водоблоке 3 отверстия насквозь, кроме последнего ребра. См. картинку. Теперь замазываем среднюю дырочку клеем, и ту, размер которой не принципиален. Еще раз промазываем швы.

6 шаг

Высохло? Вставим трубки в боковые дырочки, обмажем клеем. То же самое с другими водоблоками.
Изготовляем крепления под сокеты, чтобы плотно прижималось.

7 шаг

Гыг-гыг

Отрежем у бутылки горловину, вставим туда погружной фильтр, иначе помпу. Крепим 5-мм-е шланги, думаем: не хватает радиатора. От печек, покупные брать не будем: сделаем сами!
Остался радиатор от процессора. Еще 3 подобных берем у друзей, если будем разгонять, или 2, если не будем.

8 шаг

Место на радиаторе, где лежит проц, закрываем крышкой, похожей на крышку от чипсета, но с четырьмя лепестками. Заливаем, сохнет, сверлим, вставляем – все по старому сценарию.

9 шаг

Собираем накоНЕЦ!
У меня такая схема: помпа в бутылке – радиатор♣ – радиатор – радиатор♣ – северный мост – CPU – помпа в бутылке.
♣ – вентилятор, все от 5 вольт

10 шаг

Смотрим температуру: при 20% разгоне 4 пня выше 70 не поднималась (сейчас разгон убран).

  • Все, что вы делаете, вы делаете на свой страх и риск
  • Протестируйте систему перед установкой
  • Воду можно заливать дистиллированную, но у меня год вода из-под крана крутится
  • Ни в коем случае не забывайте про щель, размер к-й не принципиален, ни в одном водоблоке, и в радиаторах, и не забывайте ее залить после просверливания дырочек.
  • Один радиатор лучше поставить между северным мостом и CPU.

То мы решили написать специальную статью, посвященную системам водяного охлаждения компьютеров . Мы постараемся рассказать обо всех аспектах водяного охлаждения для компьютеров , в частности мы расскажем о том, что такое система водяного охлаждения, из чего она состоит и как работает . Также мы затронем такие популярные вопросы, как сборка системы водяного охлаждения, обслуживание системы водяного охлаждения и многие смежные темы.

Что такое система водяного охлаждения

Система водяного охлаждения - это система охлаждения , которая для переноса тепла использует воду в качестве теплоносителя. В отличии от систем воздушного охлаждения, которые передают тепло напрямую воздуху, система водяного охлаждения сначала передает тепло воде .

Принцип работы системы водяного охлаждения

В системе водяного охлаждения компьютера тепло , вырабатываемое процессором, передается воде через специальный теплообменник , называемый ватерблоком . Нагретая таким образом вода, в свою очередь, переноситься в следующий теплообменник - радиатор , в котором тепло из воды передается воздуху и выходит за пределы компьютера. Движение воды в системе осуществляется с помощь специального насоса , который, чаще всего, называют помпой .

Превосходство систем водяного охлаждения над воздушными объясняется тем, что вода имеет более высокие, чем у воздуха, теплоемкость (4,183 кДж·кг -1 ·K -1 у воды против 1,005 кДж·кг -1 ·K -1 у воздуха) и теплопроводность (0,6 Вт/(м·K) у воды против 0,024-0,031Вт/(м·K) у воздуха). СВО обеспечивает более быстрый и эффективный отвод тепла от охлаждаемых элементов и, соответственно, более низкие температуры на них.

Эффективность и надежность систем водяного охлаждения доказана временем и применением в большом количестве различных механизмов и устройств, нуждающихся в мощном и надежном охлаждении, например двигателях внутреннего сгорания, мощных лазерах, радиолампах, заводских станках и даже АЭС .

Зачем компьютеру водяное охлаждение

Благодаря своей высокой эффективности, используя систему водяного охлаждения можно добиться как более продуктивного охлаждения, которое положительно скажется на разгоне, периоде жизни и стабильности системы, так и более низкого уровня шума от компьютера. При желании также можно собрать систему водяного охлаждения , которая позволит работать разогнанному компьютеру при минимуме шума . По этой причине системы водяного охлаждения в первую очередь актуальны для пользователей особо мощных компьютеров, любителей мощного разгона, а также людей, которые хотят сделать свой компьютер тише , но в тоже время не хотят идти на компромиссы с его мощностью.

Довольно-таки часто можно увидеть геймеров с трех и четырех чиповыми видео подсистемами (3-Way SLI, Quad SLI, CrossFire X) , которые жалуются на высокие температуры работы (более 90 градусов ) и постоянный перегрев видеокарт, которые при этом создают очень высокий уровень шума своими системами охлаждения . Иной раз кажется, что системы охлаждения современных видеокарт проектируются без учета возможности их использования в мультичиповых конфигурациях, что приводит к плачевным последствиям, когда видеокарты устанавливаются вплотную одна к другой - холодный воздух для нормального охлаждения им просто неоткуда черпать. Не спасают и альтернативные системы воздушного охлаждения , ведь всего несколько доступных на рынке моделей обеспечивают совместимость с мультичиповыми конфигурациями. В такой ситуации именно водяное охлаждение способно решить проблему - радикально понизить температуры, улучшить стабильность и повысить надежность функционирования мощного компьютера.

Компоненты системы водяного охлаждения

Компьютерные системы водяного охлаждения состоят из определенного набора компонентов, которые можно условно разделить на обязательные и необязательные, которые устанавливаются в СВО по своему желанию.

К обязательным компонентам системы водяного охлаждения компьютера относятся:

  • ватерблок (минимум один в системе, но можно и больше)
  • радиатор
  • помпа
  • шланги
  • фитинги
  • вода

Хотя данный список и не является исчерпывающим, к необязательным можно отнести такие компоненты как:

  • резервуар
  • термодатчики
  • контролеры помпы и вентиляторов
  • сливные краны
  • индикаторы и измерители (потока, давления, расхода, температуры)
  • второстепенные ватерблоки (для силовых транзисторов, модулей памяти, жестких дисков и т.д.)
  • присадки к воде и готовые водные смеси
  • бэкплейты
  • фильтры

Для начала мы рассмотрим обязательные компоненты, без которых СВО попросту не может работать.

Ватерблок (от англ. waterblock) - это специальный теплообменник , с помощь которого тепло от греющегося элемента (процессора, видео чипа или иного элемента) передается воде . Обычно, конструкция ватерблока состоит из медного основания , а также металлической или пластиковой крышки и набора креплений, которые позволяют закрепить ватерблок на охлаждаемом элементе. Ватерблоки существуют для всех тепловыделяющих элементов компьютера, даже для тех, которым они не очень-то и нужны .

К основным типам ватерблоков можно смело отнести процессорные ватерблоки, ватерблоки для видеокарт , а также ватерблоки на системный чип (северный мост ). В свою очередь, ватерблоки для видеокарт также бывают двух типов:

  • Ватерблоки, закрывающие только графический чип - так называемые «gpu only» ватерблоки
  • Ватерблоки, закрывающие все нагревающиеся элементы видеокарты (графический чип, видеопамять, регуляторы напряжения и т.д.) - так называемые фулкавер (от англ. fullcover) ватерблоки

Хотя первые ватерблоки обычно делались из довольно-таки толстой меди (1 – 1.5 см), в соответствии с современными тенденциями в ватерблокостроении, для более эффективной работы ватерблоков их основания стараются делать тонкими. Также, для увеличения поверхности теплопередачи , в современных ватерблоках обычно применяют микроканальную или микроигольчатую структуру. В тех же случаях, когда производительность не столь критична и не ведется борьба за каждый отыгранный градус, например на системном чипе, ватерблоки делают без изощренной внутренней структуры, иногда с простыми каналами или вообще плоским дном.

Радиатор . Радиатором в системах водяного охлаждения называют водно-воздушный теплообменник, который передает воздуху тепло воды, набранное в ватерблоке. Радиаторы систем водяного охлаждения подразделяются на два подтипа :

  • Пассивные, т.е. безвентиляторные
  • Активные, т.е. продуваемые вентиляторами

Безвентиляторные (пассивные) радиаторы для систем водяного охлаждения встречаются сравнительно редко (например, радиатор в СВО Zalman Reserator) из-за того, что, помимо очевидных плюсов (отсутствие шума от вентиляторов), данный тип радиаторов отличается более низкой эффективностью (по сравнению с активными радиаторами ), что характерно для всех пассивных систем охлаждения. Помимо низкой производительности, радиаторы данного типа, обычно, занимают много места и редко помещаются даже в модифицированные корпуса.

Продуваемые вентиляторами (активные) радиаторы являются более распространенными в компьютерных системах водяного охлаждения так как обладают намного более высокой эффективностью . При этом, в случае использования тихих или бесшумных вентиляторов, можно добиться, соответственно, тихой или бесшумной работы системы охлаждения - основного преимущества пассивных радиаторов. Радиаторы данного типа бывают самого разного размера, но размер большинства популярных моделей радиаторов идет кратным к размеру 120 мм или 140мм вентилятора, то есть радиатор на три 120 мм вентилятора будет обладать размером примерно в 360 мм в длинну и 120 мм в ширину - для простоты, радиаторы такого размера, обычно, называют тройными или 360 миллиметровыми.

Не смотря на то, что редко в каких компьютерных корпусах есть места для установки радиаторов водяного охлаждения большего чем 120 мм размера, для настоящего моддера установить радиатор не составит труда.

Помпа - это электрический насос, ответственный за циркуляцию воды в контуре системы водяного охлаждения компьютера, без которого СВО бы попросту не работала. Помпы применяемые в системах водяного охлаждения бывают как работающие от 220 вольт, так и от 12 вольт. Ранее, когда в продаже редко можно было встретить специализированные компоненты для СВО, энтузиасты, в основном, использовали аквариумные помпы, которые работали от 220 вольт, что создавало определенные трудности так как помпу необходимо было включать синхронно с компьютером - для этого, чаще всего, применяли реле, которое включало помпу автоматически при старте компьютера. С развитием систем водяного охлаждения стали появляться специализированные помпы , например Laing DDC, которые обладали компактными размерами и высокой производительностью , при этом питались от стандартных компьютерных 12 вольт.

Поскольку современные ватерблоки обладают довольно-таки высоким коэффициентом гидросопротивления , что является платой за высокую производительность, то с ними рекомендуется применять специализированные мощные помпы, так как с аквариумной помпой (даже мощной) современная СВО не полностью раскроет свою производительность. Особо гнаться за мощностью, применяя в одном контуре по 2 – 3 последовательно установленные помпы или используя циркуляционный насос от системы домашнего отопления, тоже не стоит так как это не приведет к росту производительности системы в целом, ведь она, в первую очередь, ограничена максимальной теплорассеивающей способностью радиатора и эффективностью ватерблока.

Шланги или трубки , как бы их не называли , также являются одним из обязательных компоненто в любой системы водяного охлаждения, ведь именно по ним вода течет от одного компонента СВО к другому. Чаще всего, в компьютерной системе водяного охлаждения применяются шланги изготовленные из ПВХ, реже из силикона. Несмотря на популярные заблуждения, размер шланга не оказывает сильного влияния на производительность СВО в целом, главное не брать слишком тонкие (внутренний диаметр, которых меньше 8 миллиметров ) шланги и все будет ОК

Фитинги - это специальные соединительные элементы, которые позволяют подключить шланги к компонентам СВО (ватерблокам, радиатору, помпе). Фитинг и вкручиваться в отверстие с резьбой на компоненте СВО , сильно вкручивать их не нужно (никаких гаечных ключей) так как уплотнение соединения чаще всего осуществляется при помощи уплотнительного кольца из резины. Современные тенденции на рынке комплектующих для СВО таковы, что подавляющее большинство компонентов поставляются без фитингов в комплекте. Делается это для того, чтобы пользователь имел возможность самостоятельно подобрать фитинги , необходимые конкретно для его системы водяного охлаждения, ведь существуют фитинги разного типа и под разный размер шлангов. Самые популярные типом фитингов можно считать компрессионные фитинги (фитинги с накидной гайкой) и фитинги типа ёлочка (штуцеры). Фитинги бывают как прямыми, так и угловыми (которые часто идут поворотными) и ставятся они в зависимости от того, как вы собираетесь размещать систему водяного охлаждения у себя в компьютере. Фитинги также различаются по типу резьбы, чаще всего, в компьютерных системах водяного охлаждения встречается резьба стандарта G1/4, но в редких случаях встречаются также резьбы стандартов G1/8 или G3/8.

Также является обязательным компонентом СВО Для заправки систем водяного охлаждения лучше всего использовать дистиллированную воду , то есть воду, очищенную от всех примесей методом дистилляции. Иногда на западных сайтах можно встретить упоминания о деионизированной воде - существенных отличий у нее от дистиллированной нет, разве что производят ее другим способом. Иногда, вместо воды применяют специально приготовленные смеси или воду с различными присадками - существенных отличий в этом нет, поэтому данные варианты мы рассмотрим в рубрике необязательных компонентов систем водяного охлаждения. В любом случае, заливать воду из под крана или минеральную/бутилированную воду для питья крайне не рекомендуется.

Теперь остановимся подробнее на необязательных компонентах для систем водяного охлаждения .

Необязательные компоненты - это компоненты без которых система водяного охлаждения может стабильно и без проблем работать, обычно, они никак не влияют на производительность СВО, хотя в некоторых случаях могут немного ее уменьшить . Основной смысл необязательных компонентов в том, чтобы сделать эксплуатацию системы водяного охлаждения более удобной и красивой или вызывать у пользователя чувство безопасности эксплуатации СВО. Итак, перейдем к рассмотрению необязательных компонентов:

Резервуар (расширительный бачек) не является обязательным компонентом системы водяного охлаждения , несмотря на то, что большинство систем водяного охлаждения всетаки оснащены ими. Достаточно часто для удобной заправки системы жидкостью вместо резервуара применяют фитинг-тройник (T-Line) и заливную горловину. Преимущество безрезервуарных систем в том, что в случае установки СВО в компактный корпус ее можно разместить более удобно. Преимущество систем с резервуаром в более удобной заправке системы (хотя это зависит от резервуара) и более удобном удалении пузырей воздуха из системы. Резервуары встречаются самого разного размера и формы и выбирать их необходимо по критериям удобства установки и внешнего вида.

Cливной кран - это компонент, который позволяет более удобно сливать воду из контура системы водяного охлаждения . В обычном состоянии он перекрыт, но, когда появляется необходимость слить из системы воду, то его открывают. Достаточно простой компонент, который может сильно повысить удобство пользования, а точнее обслуживания , системы водяного охлаждения.

Датчики, индикаторы и измерители. Поскольку энтузиасты, обычно, любят всякие примочки и навороты, то производители просто не могли остаться в стороне и выпустили довольно много различных контролеров, измерителей и датчиков для СВО, хотя система водяного охлаждения может совершенно спокойно (и при этом надежно) работать и без них. Среди таких компонентов встречаются электронные датчики давления и потока воды, температуры воды, контролеры, подстраивающие работу вентиляторов под температуру, механически индикаторы движения воды, контролеры помп и так далее. Тем не менее, по нашему мнению, например, датчики давления и расхода воды имеет смысл ставить только в системы, предназначенные для тестирования компонентов СВО, так как особого смысла с этой информации для обычного пользователя просто нету . Ставить по несколько термодатчиков в разные места контура СВО, надеясь увидеть большой перепад температур, тоже особого смысла нет, так как вода имеет очень высокую теплоемкость, то есть нагреваясь буквально один градус вода «впитывает» большое количество тепла, при этом в контуре СВО она движется с довольно большой скоростью, что приводит к тому, что температура воды в разных местах контура СВО в одно время довольно слабо отличается, так что впечатляющих значений вам не увидеть Да и не стоит забывать, что большинство компьютерных термодатчиков имеют погрешность в ±1 градус.

Фильтр. В некоторых системах водяного охлаждения можно встретить фильтр, подключенный в контур. Его задача состоит в том, чтобы отфильтровывать разнообразные мелкие частицы , попавшие в систему - это может быть пыль которая была в шлангах, остатки пайки в радиаторе, осадок, появившийся от использования красителя или антикоррозионной добавки.

Присадки к воде и готовые смеси. В дополнение к воде, в контуре СВО можно применять различные присадки для воды, некоторые из них защищают от коррозии, другие предотвращают развитие бактерий в системе, а третьи позволяют подкрасить воду в системе водяного охлаждения нужным вам цветом. Существуют также готовые смеси, которые содержат воду в качестве основного компонента с антикоррозионными присадками и красителем. Также бывают готовые смеси в состав которых входят присадки, повышающие производительность СВО, хотя повышение производительности от них незначительное. В продаже также можно встретить жидкости для систем водяного охлаждения, сделанные не на основе воды, а на основе специальной диэлектрической жидкости, которая не проводит электрический ток и, соответственно, не вызовет короткого замыкания при утечке на компоненты ПК. Обычная дистиллированная вода, в принципе, тоже не проводит ток, но, пролившись на запыленные компоненты ПК, может стать электропроводной. Особого смысла в диэлектрической жидкости нет так как нормально собранная и протестированная система водяного охлаждения не протекает и достаточно надежна. Также стоит заметить, что антикоррозионные присадки, иногда, в процессе своей роботы выпадают в осадок мелкой пылью, а красящие присадки могут немного прокрасить шланги и акрил в компонентах СВО, но, по нашему опыту, на это не стоит обращать внимание, так как это не критично. Главное соблюдать инструкцию к присадкам и не лить их сверх меры, так как это уже может привести к более плачевным последствиям. Применять ли в системе просто дистиллированную воду, воду с присадками или готовую смесь - особой разницы нет, а оптимальный вариант зависит от того, что вам необходимо.

Бэкплейт - это специальная крепежная пластина, которая помогает разгрузить текстолит материнской платы или видеокарты от усилия, создаваемого креплениями ватерблока, соответственно, уменьшая изгиб текстолита и шанс угробить дорогостоящее железо. Хотя бэкплейт и не является обязательным компонентом, его можно довольно-таки часто встреть в СВО, некоторые модели ватерблоков идут сразу укомплектованными бэкплейтами, а к другим он доступен ввиде опционального аксессуара.

Второстепенные ватерблоки. Помимо охлаждения водой важных и сильно греющихся компонентов, некоторые энтузиасты ставят дополнительные ватерблоки на компоненты, которые либо слабо греются, либо не требуют мощного активного охлаждения, например. К компонентам, которым водяное охлаждение необходимо разве что для вида, относятся: силовые транзисторы цепей питания, оперативная память, южный мост и жесткие диски. Необязательность данных компонентов в системе водяного охлаждения заключается в том, что, даже если вы и поставите на эти компоненты водяное охлаждение, то никакой дополнительной стабильности системы, улучшения разгона или других заметных результатов вы не получите - связано это, в первую очередь, с малым тепловыделением данных элементов, а также с неэффективностью ватерблоков для этих компонентов. Из четких плюсов установки данных ватерблоком можно выделить лишь внешний вид, а из минусов - повышение гидросопротивления в контуре СВО, увеличение стоимости всей системы (при этом значительное) и, обычно, малая апгрейдопригодность данных ватерблоков.

Помимо обязательных и необязательных компонентов для систем водяного охлаждения также можно выделить категорию так называемых гибридных компонентов. Иногда, в продаже можно встретить компоненты, представляющие собой два или более компонента СВО, соединенных в одно устройство. Среди таких устройств бывают: гибриды помпы и процессорного ватерблока, радиаторы для сво со встроенными помпой и резервуаром, очень распространены помпы, совмещенные с резервуаром. Смысл таких компонентов заключается в уменьшении занимаемого места и более удобной установке. Минусом таких компонентов, обычно, является их ограниченная пригодность к апгрейду.

Отдельно стоит категория самодельных компонентов для систем водяного охлаждения. Первоначально, примерно с 2000 года, все компоненты для систем водяного охлаждения изготавливались или дорабатывались энтузиастами своими руками, ведь специализированных компонентов для СВО тогда попросту не производилось. Поэтому, если человек хотел установить себе СВО, то ему приходилось делать все своими руками. После относительной популяризации водяного охлаждения для компьютеров, компоненты для них начали производить большое количество фирм и сейчас можно без особых проблем купить как готовую систему водяного охлаждения, так и все необходимые компоненты для ее самостоятельной сборки. Так что, в принципе, можно сказать, что сейчас нет необходимости самостоятельно изготавливать компоненты СВО для того чтобы установить на свой компьютер водяное охлаждение. Единственными причинами, по которым сейчас, некоторые, энтузиасты занимаются самостоятельным изготовлением компонентов СВО являются желание сэкономить или попробовать свои силы в изготовлении таких компонентов. Тем не менее, желание сэкономить не всегда удается осуществить, ведь помимо стоимости работы и компонентов изготовляемой детали, также есть затраты времени, которые, обычно, не учитываются людьми, желающими сэкономить, но реальность такова, что времени на самостоятельное изготовление прийдется потратить уйму и результат при этом не будет гарантирован. Да и производительность и надежность у самодельных компонентов, зачастую, оказывается далеко не на самом высоком уровне, так как для изготовления комплектующих серийного уровня необходимо иметь очень прямые (золотые) руки Если решитесь на самостоятельно изготовление, к примеру, ватреблока, то учитывайте данные факты.

Внешняя или внутренняя СВО

Помимо прочих признаков, системы водяного охлаждения делятся на внешние и внутренние. Внешние системы водяного охлаждения, обычно, выполнены ввиде отдельного «ящика», т.е. модуля, который при помощи шлангов подключается к ватерблокам, установленным на комплектующих в корпусе вашего ПК. В корпусе внешней системы водяного охлаждения почти всегда располагается радиатор с вентиляторами, помпа, резервуар и, иногда, блок питания для помпы с датчиками температуры и/или потока жидкости. К внешним системам относятся, например, системы водяного охлаждения Zalman семейства Reserator. Системы, устанавливаемые ввиде отдельного модуля, удобны тем, что для пользователя нет необходимости дорабатывать корпус своего компьютера, но очень неудобны, если вы планируете перемещать свой компьютер даже на минимальные расстояния, например, в соседнюю комнату

Внутренние системы водяного охлаждения, в идеале, располагаются полностью внутри корпуса ПК, но, из-за того, что далеко не все компьютерные корпуса хорошо приспособлены для установки СВО, некоторые компоненты внутренней системы водяного охлаждения (чаще всего радиатор), можно часто увидеть, установленными на внешней поверхности корпуса. К плюсам внутренних СВО можно отнести то, что они очень удобны при переноски компьютера так как они не будут мешать вам и не будут требовать сливать жидкость при транспортировке. Еще одним плюсом внутренних СВО можно назвать то, что при внутренней установки СВО ни в коей мере не страдает внешний вид корпуса, причем при моддинге компьютера система водяного охлаждения может служить отличным украшением корпуса.

К минусам внутренних систем водяного охлаждения можно отнести относительную сложность их установки, по сравнению с внешними, а также необходимость модификации корпуса для установки СВО во многих случаях. Еще одним негативным моментом можно назвать то, что внутренняя СВО добавят вашему корпусу пару килограмм веса

Готовые системы или самостоятельная сборка

Системы водяного охлаждения, среди прочих признаков, также подразделяются по варианту сборки и комплектации на:

  • Готовые системы, в которых все компоненты СВО покупаются в одном наборе, с инструкцией по установке
  • Самодельные системы, которые собираются самостоятельно из отдельных компонентов

Обычно, многими энтузиастами считается, что все «системы из коробки» показывают низкую производительность, но это далеко не так - комплекты водяного охлаждения от таких известных марок, как Swiftech, Danger Dan, Koolance и Alphacool демонстрируют вполне приличную производительность и про них уж точно нельзя сказать, что они слабые, да и данные фирмы являются зарекомендовавшими себя производителями высокопроизводительных компонентов систем водяного охлаждения.

Среди плюсов готовых систем можно отметить удобство - вы покупаете сразу всё, что необходимо для установки водяного охлаждения в одном наборе, да и инструкция по сборке идет в комплекте. Кроме того, производители готовых систем водяного охлаждения, обычно, стараются предусмотреть все возможные ситуации, чтобы у пользователя, например, не возникло проблем с установкой и креплением компонентов. К минусам таких систем можно отнести то, что они не гибкие в плане конфигурации, к примеру, у производителя есть несколько вариантов готовых систем водяного охлаждения и изменить их комплектацию, чтобы подобрать комплектующие лучше подходящие именно вам, вы, обычно, не имеете возможности.

Покупая же комплектующие водяного охлаждения по отдельности вы можете подобрать именно те компоненты, которые, по вашему мнению, лучше всего подойдут вам. Помимо этого, покупая систему из отдельных компонентов, иногда, можно сэкономить, но тут уже всё зависит от вас. Из минусов такого подхода можно выделить некоторую сложность в сборке таких систем для новичков, например, нам доводилось видеть случаи, когда люди, недостаточно разбирающиеся в теме, покупали не все необходимые компоненты и/или несовместимые между собой компоненты и попадали впросак (понимали что что-то здесь не так) только когда садились за сборку СВО.

Плюсы и минусы систем водяного охлаждения

К основным плюсам водяного охлаждения компьютеров можно отнести: возможность сборки тихого и мощного ПК, расширенные возможности по разгону, улучшенная стабильность при разгоне, отличный внешний вид и долгий срок службы. Благодаря высокой эффективности водяного охлаждения, можно собрать такую СВО, которая позволила бы эксплуатировать очень мощный разогнанный игровой компьютер с несколькими видеокартами при относительно низком уровне шума, недостижимом для воздушных систем охлаждения. Опять же, благодаря своей высокой эффективности, систем водяного охлаждения позволяют достичь более высокого уровня разгона процессора или видеокарты, недостижимого с помощью воздушного охлаждения. Системы водяного охлаждения, чаще всего, имеют отличный внешний вид и отлично смотрятся в модифицированном (или не очень) компьютере.

Из минусов систем водяного охлаждения, обычно, выделают: сложность сборки, дороговизну и ненадежность. Наше мнение таково, что эти минусы имеют под собой мало реальных фактов и являются очень спорными и относительными. К примеру, сложность сборки системы водяного охлаждения однозначно нельзя назвать высокой - собрать СВО не сильно сложнее, чем собрать компьютер, да и вообще времена, когда все комплектующие необходимо было дорабатывать в обязательном порядке или делать все компоненты своими руками, давно прошли и на данный момент в сфере СВО практически все стандартизировано и доступно в продаже. Надежность, правильно собранных, систем водяного охлаждения компьютера тоже не вызывает сомнений, как не вызывает сомнения надежность автомобильной системы охлаждения или системы отопления частного дома - при правильной сборке и эксплуатации проблем быть не должно. Конечно, от брака или несчастного случая никто не застрахован, но вероятность таких событий существует не только при применении СВО, а и с самыми обычными видеокартами, жесткими дисками и прочими комплектующими. Стоимость же, по нашему мнению, также не стоит выделять как минус, так как такой «минус» тогда смело можно приписывать всей высокопроизводительной технике . Да и у каждого пользователя свое понимание про дороговизну или дешевизну. О стоимости СВО я хотел бы поговорить отдельно.

Стоимость системы водяного охлаждения

Стоимость, как фактор, является, наверное наиболее часто упоминаемым «минусом», который приписывают всем системам водяного охлаждения ПК . При этом все забывают, что стоимость системы водяного охлаждения сильно зависит от того, на каких компонентах ее собрать: можно собирать СВО, чтобы общая стоимость была подешевле не в ущерб производительности, а можно - выбирать комплектующие по максимальной цене При этом итоговая стоимость похожих по эффективности СВО будет отличатся в разы.

Стоимость системы водяного охлаждения также зависит от того, на какой компьютер ее будут ставить, ведь чем мощнее компьютер, тем, в принципе, и дороже будет СВО для него, так как для мощного компьютера и СВО нужна более мощная. По нашему мнению, стоимость СВО является вполне оправданной на фоне других комплектующих, ведь система водяного охлаждения по факту и является отдельным компонентом, причем, по нашему мнению, обязательным для по-настоящему мощных ПК. Еще одним фактором, который необходимо учитывать при оценки стоимости СВО, является ее долговечность так как, правильно подобранные, компоненты СВО могут служить не один год подряд, переживая многочисленные апгрейды всего остального железа - не многие компоненты ПК могут похвастаться такой живучестью (разве что корпус или, взятый с избытком, БП), соответственно трата относительно большой суммы на СВО плавно распределяется по времени и не выглядит расточительной.

Если же вам очень хочется установить себе СВО, а с финансами напряг и в ближайшее время улучшений не намечается, то никто не отменял самодельные компоненты

Водяное охлаждение в моддинге

Помимо высокой эффективности, системы водяного охлаждения для ПК отлично выглядят, что объясняет популярность использования систем водяного охлаждения в множестве моддинг проектов. Благодаря возможности применять цветные или флуоресцентные шланги и/или жидкости, возможности подсветить светодиодами водоблоки, подобрать комплектующие, которые будут подходить вам по цветовой гамме и стилю, систему водяного охлаждения можно отлично вписать в практически любой моддинг проект, и/или сделать ее основной фишкой вашего моддинг проекта. Использование СВО в моддинг проекте , при правильной установке, позволяет улучшить обзор некоторых комплектующих, обычно скрытых большими воздушными системами охлада.

About sTs

Люблю самоделки. Стремлюсь к здоровому, гармоничному образу жизни. В людях ценю открытость и честность. Своим хочу донести до молодёжи ценность созидательных качеств в человеке. Пусть каждый обретет новые знакомства и получит массу знаний и опыта , которые сделают из него целостную личность ! Подробнее о себе рассказываю в блоге .
Основные детали
  • Водоблок (или теплообменник)
  • Центробежный водяной насос (помпа) мощностью 600 литров/ч.
  • Радиатор охлаждения (автомобильный)
  • Расширительный резервуар под теплоноситель (воду)
  • Шланги 10-12 мм;
  • Вентиляторы диаметром 120мм (4 штуки)
  • Источник питания для вентиляторов
  • Расходные материалы
Водоблок

Основная задача водорблока это быстро забрать у процессора тепло и передать его теплоносителю. Для данных целей наиболее подходит медь. Возможно изготовление теплообменника и из алюминия, но его теплопроводность (230Вт/(м*К)) вдвое меньше меди (395,4 Вт/(м*К)). Также немаловажно устройство водоблока (или теплообменника). Устройство теплообменника представляет собой один или несколько непрерывных каналов, проходящих через весь внутренний объем водоблока. При этом важно максимально увеличить поверхность соприкосновения с водой и избежать застоев воды. Для увеличения поверхности обычно используют частые надрезы на стенках водоблока или устанавливают мелкие игольчатые радиаторы.

Я не пытался сделать что-то сложное, поэтому начал делать простую ёмкость для воды с двумя отверстиями для трубок. За основу был взят латунный соединитель для труб, а основанием стала медная пластина толщиной 2 миллиметра. Сверху в такую же пластину вставляются две медные трубки диаметра шланга. Всё запаивается оловянно-свинцовым припоем. Делая водоблок побольше я сначала не задумывался о его весе. В собранном виде со шлангами и водой на материнской плате будет висеть более 300 грамм, и для облегчения пришлось использовать дополнительные крепления для шлангов.

  • Материал: медь, латунь
  • Диаметр штуцеров: 10 мм
  • Пайка: Оловянно-свинцовый припой
  • Способ крепления: винтами к креплению магазинного кулера, шланги крепятся хомутами
  • Цена: около 100 рублей
Выпиливание и пайка

Помпа

Помпы бывают внешние или погружные. Первая лишь пропускает ее через себя, а вторая ее выталкивает, будучи в нее погружена. Здесь использована погружная, помещается в ёмкость с водой. Внешнюю найти не удалось, искал в зоомагазинах, а там только погружные аквариумные помпы. Мощность от 200 до 1400 литров в час цена от 500 до 2000 рублей. Питается от розетки, мощность от 4 до 20 ватт. На твёрдой поверхности помпа сильно шумит, а на поролоне шум незначителен. В качестве резервуара для воды использовалась банка, вмещающая в себя помпу. Для присоединения силиконовых шлангов были использованы стальные хомуты на винтах. Для лёгкого надевания и снятия шлангов можно использовать смазку без запаха.

  • Максимальная производительность - 650 л/ч.
  • Высота подъема воды – 80 см
  • Напряжение – 220В
  • Мощность – 6 Вт
  • Цена - 580 рублей
Радиатор

Насколько качественным будет радиатор, во многом определит эффективность всей системы водяного охлаждения. Тут использован автомобильный радиаторсистемы отопления (печка) от девятки, куплен старый на барахолке за 100 рублей. К сожалению, интервал между пластинами в нём оказался меньше миллиметра, поэтому пришлось вручную раздвигать и сжимать пластины по нескольку штук, чтобы слабые китайские вентиляторы смогли продуть его насквозь.

  • Материал трубок: медь
  • Материал ребер: алюминий
  • Размер: 35х20х5 см
  • Диаметр штуцеров: 14 мм
  • Цена: 100 рублей
Обдув

Обдувается радиатор двумя парами 12 см вентиляторами спереди и сзади. Запитать 4 вентилятора от системного блока во время проверки не представилось возможным, поэтому пришлось собрать простой блок питания на 12 вольт. Вентиляторы были соединены параллельно, и подключены с учётом полярности. Это важно, иначе с большой вероятностью вентилятор можно испортить. У кулера 3 провода: черный (земля), красный (+12В) и желтый (значение скорости).

  • Материал: китайский пластик
  • Диаметр: 12 см
  • Напряжение: 12 В
  • Ток: 0.15 А
  • Цена: 80*4 рублей
Хозяйке на заметку

Цель снижения шума я не ставил из-за стоимости вентиляторов. Так вентилятор за 100 рублей изготовлен из чёрного пластика и потребляет 150 миллиампер тока. Именно такие я использовал для обдува радиатора, дует слабо, зато дешёвый. Уже за 200-300 рублей можно найти намного более мощные и красивые модели с потреблением 300-600 миллиампер, но на максимальных оборотах они шумные. Это решается силиконовыми прокладками и антивибрационными креплениями, но для меня решающее значение играла минимальная стоимость.

Блок питания

Если готового под рукой нет, можно собрать простейший из подручных материалов и микросхемы, которая стоит меньше 100 рублей. Для 4 вентиляторов необходим ток 0,6 А и немного про запас. Микросхема даёт примерно 1 ампер при напряжении от 9 до 15 вольт в зависимости от модели. Можно использовать любую модель, выставляя 12 вольт переменным резистором.

  • Инструменты и паяльник
  • Радиодетали
  • Микросхема
  • Провода и изоляция
  • Цена: 100 рублей

Установка и проверка

Аппаратная часть
  • Процессор: Intel Core i7 960 3.2 ГГц / 4.3 ГГц
  • Системная плата: ASUS Rampage 3 formula
  • Блок питания: OCZ ZX1250W
  • Термопаста: АЛ-СИЛ 3
Программное обеспечение
  • Windows 7 x64 SP1
  • Prime 95
  • RealTemp 3.69
  • Cpu-z 1.58

Особо долго тестировать не пришлось, т.к. результаты не приближались даже к возможностям воздушного кулера. Радиатор СВО обдувался пока только двумя китайскими вентиляторами из 4х возможных и ещё не были раздвинуты шире пластины для лучшего продува. Так в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО 57 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 100 градусов за 30 секунд на СВО. При разгоне результаты ещё хуже.

Была предпринята попытка сделать новый водоблок с более тонкой (0,5 мм) медной пластиной основания и почти втрое более вместительный внутри, правда из тех же материалов (медь + латунь). В радиаторе раздвинуты пластины для лучшего продува и добавлено ещё два вентилятора, теперь их 4 штуки. В этот раз в режиме экономии энергии и нулевой загрузке температура процессора на воздухе примерно 42 градуса, а на самодельной СВО примерно 55 градусов. Запуск теста prime95 на 4 потока (50% загрузка) прогревает до 65 градусов на воздухе и до 83 градусов на СВО. Но при этом вода в контуре начинает довольно быстро нагреваться и уже через 5-7 минут температура процессора достигает 96 градусов. Это показания без разгона.

Собирать СВО было, конечно интересно, но применить её для охлаждения современного процессора не удалось. В старых компьютерах отлично справляется штатный кулер. Может быть я подобрал некачественные материалы или неправильно изготавливал водоблок, но собрать СВО менее, чем за 1000 рублей в домашних условиях мне не представляется возможным. Почитав обзоры бюджетных готовых СВО, имеющихся в магазинах я не надеялся, что моя самоделка будет лучше хорошего воздушного кулера. Для себя сделал вывод, что не стоит экономить в будущем на комплектующих для СВО. Когда решусь покупать СВО для разгона, однозначно буду собирать её сам из отдельных деталей.

Видеоролик

Системы водяного охлаждения для различных компонентов ПК в последнее время на слуху. Почему водяное охлаждение для компьютера выглядит настолько привлекательным? По какой причине оно лучше обычного воздушного? Обо всем этом вы узнаете в продолжении статьи.

Что бы у вас не стояло - "водянка" или простой кулер, физически, вы просто перемещаете тепло из одного места в другое. Помимо этого без кулера и радиатора, конечно, не обойтись. Они используются в обеих видах охлаждения. В принципе, любая система охлаждения компьютера работает по одним и тем же принципам, принципам термодинамики.

По сути, в основном водяное охлаждение для компьютера используется разве что для придания сборке эстетичности. Не поймите неправильно, водяное охлаждение способно справляться с огромным тепловыделением, сохраняя при этом низкие температуры.

Если вы смотрите в сторону цены/качества - то лучше всего взять хороший башенный кулер для процессора и видеокарту с двумя-тремя вентиляторами. Этого будет вполне достаточно, чтобы никогда не достигать температурного предела. Да и на сегодняшний день, при том же разгоне вы скорее упретесь в "железные" ограничения, нежели в температурный лимит.

Водяное охлаждение для компьютера практически не издает заметного шума. Кулеров может быть много, но уровень шума зависит как раз от скорости вращения оных. Например, если вы поставите 5 120 мм вертушек на частоте 1200 оборотов, и сравните с двумя такими же, но с 3000 оборотами, именно второй вариант будет шумнее.

Эстетика

Как сказано выше, водяное охлаждение применяется больше для вида, чтобы выделиться среди других. С помощью водяного охлаждения сделать это можно по-разному. Заметьте, никто не сказал что системы с воздушным охлаждением не могут выглядеть эстетично. Системы водяного охлаждения популярны среди моддеров. Благодаря им мы увидели в продаже такие штуки, как прозрачные боковые крышки, светодиодные ленты, кабеля в разноцветных оплетках.

У вас есть 4 варианта оснастить "водянкой" ваш компьютер. Как вариант, можно купить готовый кулер. Так вы не будете морочить себе голову с установкой и получите то же водяное охлаждение, еще и на гарантии.

Второй вариант - использовать мягкие трубки, цветные или прозрачные. Это наиболее удобный способ для сборки ввиду гибкости трубок и простоты в использовании.

Третий, и пожалуй наиболее популярный метод - пользоваться готовыми негнущимися акриловыми трубками. Прямые линии, сгибы трубок под углом придадут вашей сборке необычности.

Есть еще медные трубки. Практически полностью идентичны акриловым, разве что их проще согнуть. Ну и дешевизна тоже берет свое. Медь красиво сочетается с никелированными панелями. Что бы вы не выбрали, выйдет получаете очень тихая система, способная справляться с огромным тепловыделением.

Компоненты водяного охлаждения

Если вы думали что сборка своего ПК была сложной, у меня для вас плохие новости. Для сборки системы водяного охлаждения вам понадобятся: корпус, трубки, радиатор(ы), процессорный блок, блок для видеокарты, панель на плату видеокарты, резервуар(ы), помп(ы), компрессионные фитинги, угловые фитинги, запорные клапаны, охлаждающая жидкость и вентиляторы. С тех пор как вы решили сделать водяное охлаждение самому - будьте готовы раскошелиться. Красота требует жертв.

Процессорный блок

Пожалуй, самый важный компонент системы водяного охлаждения для компьютера. Убедитесь в том, чтобы блок был совместим с вашим процессором. Хотя, иногда этим можо пренебречь, т.к по размеру чипы от Intel и AMD практически не отличаются. Популярный вариант - Corsair H110.

Блок для видеокарты

Тут тоже нужно убедится о совместимости вашей карты с блоком охлаждения. Есть производители, например EKWB, которая выпускает блоки охлаждения, разработанные специально для карт серий Windforce от Gigabyte, Strix от ASUS, Lightning от MSI.

Блок для оперативки

Охлаждать ли оперативную память или нет - ваш выбор. Обычно дорогие планки идут уже с красивыми радиаторами, и лично я не вижу смысла в водяном охлаждении оперативной памяти. И никто вас не накажет, если все что вы собираетесь охлаждать подобным образом - лишь процессор и карта.

Фитинги

Система водяного охлаждения для компьютера требует закрепления трубок фитингами. Это наиболее важная часть системы. В зависимости от того, какую трубки вы выбираете, вам понадобятся либо компрессионные фитинги, либо акриловые фитинги. Если не хотите заморачиваться, можно просто взять стандартные.

Однако, если вы сторонник эстетики и прямолинейности, можно докупить те же угловые фитинги, как правило на 45 или 90 градусов. Кроме того, стопорный клапан может пригодиться для обслуживания.

Помпы и резервуары

Технически, вам не нужно покупать резервуар, чтобы успешно работать с водяным охлаждением. Тем не менее, они выглядят довольно впечатляюще, и так намного легче заполнять систему с водяным охлаждением по сравнению с другими методами.

Однако вам всегда понадобится насос, чтобы гарантировать, что жидкость в вашей системе переливается, отводит тепло от ваших основных компонентов и выходит к радиаторам.

Радиаторы и постоянное давление

Система водяного охлаждения для компьютера требует хорошей организации внешнего охлаждения помимо самих водяных трубок и насосов.

На этом этапе нам нужно узнать, как отводить накопившееся тепло. Единственный вариант - использование радиаторов. Можно сделать это как вам нравится, используя отдельные узлы для ваших видеокарт и процессоров или комбинируя их в одну систему.

Радиаторы же по прежнему необходимы, дабы избавиться от всего этого тепла, а так же соответствующие вентиляторы, чтобы это все выдувать. После того, как вы решите, сколько радиаторов позволяет разместить ваш корпус и сколько вы собираетесь использовать, вам нужно ближе познакомиться с понятием FPI и толщиной радиаторов, которые вы будете использовать.

FPI означает ребро на дюйм. По сути, чем выше FPI, тем выше постоянное давление, которое вам понадобится для эффективного перемещения холодного воздуха через этот радиатор.

Например, если у вас есть радиатор с 38 FPI , вам вероятно, понадобятся вентиляторы с оптимизацией давления. Однако, если у вас более глубокие радиаторы с меньшим FPI, равным 16, вы не увидите никакой сопоставимой разницы между вентиляторами постоянного давления или вентиляторами, использующими потоки воздуха. В этих случаях лучше оснащать радиаторы классическими кулерами.

Сборка и проектирование вашей системы

На этом этапе стоит уделить внимание выбору железа для вашей сборки. Для начала присмотрим лучший корпус. На рынке существует множество корпусов готовых для установки водяного охлаждения, начиная с маленьких MiniITX, заканчивая огромными E-ATX.

Как только вы нашли подходящий вам корпус, надо посмотреть, какие радиаторы возможно установить. Затем стоит продумать размещение трубок и сколько узлов охлаждения вы планируете поставить - 1 или 2. Как только вы все продумали, нужно узнать сколько нужно купить фиттингов и каким образом вы планируете запустить систему. Обычно на каждое охлаждаемое устройство нужно два фиттинга.

Для нас вопрос выбора корпуса был не сложен. Мы взяли Fractal Define S, специально разработанный для использования водяного охладения. Поставим два радиатора наверх и три спереди. Охлаждать будем две карточки от Nvidia и Intel Core i7-5820K.

В роли материнки будет ASUS X99 Sabertooth - на топовом чипсете Х99 и потрясающим дизайном. Плата покрыта черными и серыми защитными элементами. А чтобы добавить контраста - будем использовать белую жидкость.

Выбор нужного корпуса может оказаться непростой задачей, особенно для мода с водяным охлаждением. Как писалось выше, нужно смотреть в сторону готовых решений, предусматривающих возможность водяного охлаждения. Parvum, Phanteks, Corsair, Caselabs и Fractal как раз специализируются на выпуске корпусов для подобных модов, и позволяют превратить сборку ПК в искусство. Так же следует позаботиться о количестве радиаторов, о месте размещения резервуара, и как будут размещены трубки.

Фитинги и узлы

Начнем процесс сборки. Как и со сборкой обычного ПК, стоит собирать все сначала вне корпуса, чтобы увидеть как оно все работает, и уже только потом пихать все в корпус. Мы протестировали по отдельность каждую видеокарту, память и процессор со стоковым охлаждением, перед тем, как установить водяное охлаждение.

Далее идет сам процесс сборки, освобождение внутренностей корпуса от ненужных составляющих, например слотов для установки жестких дисков и т.д. Затем устанавливаем материнскую плату, оперативную память и видеокарты. Все плотно прикручиваем, чтобы ничего не выпало и не повредилось. Затем прикрутили радиаторы. Настало время установки резервуара и фитингов.

Укладка кабелей

В сборках подобного рода, укладка проводов должна быть безупречной. Не думаю что вам понравятся потрепанные провода, вылазящие изо всех щелей. Они не только будут мешать прокладке трубок, но и нормальной циркуляции воздуха. Блоки питания от Be Quiet!, Cooler Master, Corsair, EVGA и Seasonic укомплектованы уже отдельными кабелями с оплеткой. Как вариант, можно приобрести ее отдельно и "одеть" провода. Да, это сложно и займет много времени, но результат того стоит.

Ко всему прочему был приобретен отдельный контроллер кулеров от Phanteks. Благодаря ему, управлять пятью кулерами намного проще, к тому же скорость вращения будет зависеть от температуры процессора (которая в этой сборке будет достаточно низкая).

Сборка и наполнение СО

Пришло время начинать сборку системы охлаждения. Выровняйте отрезок трубки между двумя точками, которые вы хотите соединить, затем отрежьте немного больше чем вам кажется.

Лучше иметь немного про запас, так как трубку всегда можно обрезать. Затем открутите один из фитингов, насадите, покручивая, трубу на фитинг и наденьте другой конец обжимного фитинга на незакрепленный конец. Затем завинтите его, сжав трубопровод. Если вы изо всех сил пытаетесь вставить трубку, используйте пару плоскогубцев с иглами. Осторожно вставьте их в конец трубки и аккуратно растяните трубу, чтобы было легче работать.

Теперь вам предстоит снять муфту с другого фитинга, предварительно прикрепить его к новой трубке и сделать то же самое с другим концом.

Не столь важно, куда идет трубка, когда все работает в одном узле. Как только система загерметизирована и находится под давлением, температура воды будет одинакова, вне зависимости от того, к какому компоненту какая трубка идет. Все благодаря физике.

Подойдем к самому страшному этапу сборки - наполнению нашей системы. Сперва убедитесь что жидкость попадает из резервуара в помпы под силой тяжести. Затем прикрепите последний фитинг сверху резервуара. Используйте воронку, чтобы аккуратно налить наш хладагент в систему. В нашем случае мы просто взяли пустую вымытую бутылочку из-под соуса.

Прежде чем приступать, стоит убедиться что на материнскую плату не подается питание. Не лишним будет отключить питание и от процессора, видеокарт, и дисков. Сам блок тоже нужно обесточить.

Для удобства можно соединить две точки питания самом блоке питания канцелярской скрепкой, либо использовать специальный мостик. Тогда при заполнении резервуаров все сводится к банальному размыканию цепи питания. Помните, что этого не стоит делать, пока в резервуаре и насосе есть внутри жидкость.

Подведем итоги

Готовая сборка прекрасно выглядит. Как уже подметили, белая жидкость и черные блоки охлаждения отлично контрастируют с цветовой гаммой материнки. i7-5820k был разогнан до 4.4 ГГц, и температура оного вышла стандартная для подобного рода сборок - около 55 градусов Цельсия в нагрузке.

Видеокарты в режиме нагрузки выдавали около 60 градусов, а скорость кулеров для всей системы была выставлена на уровне 20%. Что касается производительности - выжать из видеокарт и процессора большее нам не удалось. В любом случае все работало на пределе их технологических возможностей. Все работало крайне тихо, даже под нагрузкой.

Тест на протекание прошел успешно. Несмотря на относительно небольшое время теста (около 45 минут), протечек не было никаких. Фитинги от EK действительно обеспечивают хороший уровень герметичности.

Главное - не повредить трубки во время сборки. В целом, перед тем, как запитать все комплектующие, стоит проводить тест как минимум в течении суток.

Если вы собираете компьютер, пользуясь критерием "цена/качество", не имеет смысла делать кастомное водяное охлаждение. Даже если брать не самые дорогие компоненты, это обойдется в сумму около 600 долларов США. система водяного охлаждения для компьютера предназначена для тех, кто хочет построить красивую и тихую рабочую станцию, способную выполнять любую задачу, которую только можно придумать.

Вывод

В этой статье было написано, какие компоненты понадобятся для сборки кастомной системы водяного охлаждения, а так же как собрать компьютер с водяным охлаждением. Думаю много кого не устраивает шум компьютера, особенно в ресурсоемких приложениях, например играх. Поэтому при наличии лишней пары сотен долларов можно взять готовый блок для процессора, и видеокарту с уже установленной водяной СО. Во всяком случае, даже если вы и не собираетесь приобретать "водянку", вы узнали как работает водяное охлаждение компьютера.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!