Особенности приема сигналов с круговой поляризацией. Поляризация электромагнитных волн

Антенны можно разделить на категории по виду поляризации: линейная или круговая. В этой статье мы подробно рассмотрим различия между этими видами поляризации.

Это перевод статьи Оскара, оригинал: Circular or Linear Polarized Antenna For FPV

Виды поляризации

Поляризация определяет вид волн в пространстве. Этот термин очень часто употребляется при обсуждении FPV оборудования.

Линейная поляризация

В этом случае сигнал колеблется горизонтально или вертикально, но только в одной плоскости.

Большинство простых антенн дают линейную поляризацию сигнала: например, стоковые диполи (в комплекте с видео передатчиками и приемниками), или даже домашний Wifi.

Достоинства и недостатки линейной поляризации

Антенны линейной поляризации очень широко распространены благодаря простоте конструкции, что в самом примитивном виде дает просто кусок провода. Эти антенны имеют малый размер, низкую цену, их легко ремонтировать и собирать.

В общем и целом, линейная поляризация отлично подходит для больших расстояний, т.к. вся энергия будет сосредоточена в одной плоскости. Это преимущество не всегда проявляется из-за многолучевого распространения сигнала (многократные переотражения сигнала), но это мы обсудим чуть позже.

Для того чтобы получить максимальный уровень сигнала, антенны приемника и передатчика должны быть расположены параллельно (для максимального перекрытия излучения.

В самом крайнем случае, когда антенна приемника и антенна передатчика расположены под углом 90 градусов друг относительно друга — получаем наименьший уровень сигнала. Результат — потери сигнала в 30 дБ, это кросс поляризация.

Наши коптеры постоянно перемещаются в небе, поэтому невозможно держать антенны параллельно друг другу, следовательно, прием FPV сигнала будет не стабильным.

Круговая поляризация

При круговой поляризации сигнал распространяется в обоих плоскостях (в вертикальной и горизонтальной) со сдвигом фазы на 90 градусов, представить можно в виде штопора.

Посмотрим на наиболее часто используемые антенны для FPV.

Четырехлепестковый клевер (Skew-Planar Wheel antenna) — антенна круговой поляризации, имеет отличную устойчивость к отраженным сигналам. Обычно она используется там, где аэродинамическое сопротивление не критично. Как правило это антенна на приемнике, хотя и на передатчик ее тоже можно поставить.

Трехлепестковый клевер (The Cloverleaf antenna) — обычно используется на передатчиках. Можно комбинировать с четырехлепестковым клевером для увеличения радиуса приема и увеличения качества сигнала.

Достоинства и недостатки круговой поляризации

Сигнал с круговой поляризацией всегда попадает на антенну, т.е. вне зависимости от угла между антенной на квадрике и на приемнике. Именно поэтому антенны с круговой поляризацией — стандарт для FPV.

Еще одно достоинство антенн с круговой поляризацией — это возможность отсекать отраженный сигнал .

Многолучевое распространение сигнала — одна из главных причин плохого качества видео (изменение цвета, помехи, скрэмблированное изображение, двоение и т.п.). Так бывает, когда сигнал отражается от объектов и приходит с другой фазой, при этом смешиваясь с основным сигналом.

Круговая поляризация бывает, как левой (LHCP), так и правой (RHCP). На передатчике и приемнике должны быть антенны с одним и тем же направлением, иначе будет очень сильная потеря сигнала.

Круговая поляризация хорошо защищает от переотраженных сигналов, потому что, когда сигнал отражается от объекта, меняется направление поляризации. Т.е. антенна LHCP отсекает RHCP сигнал и наоборот (кросс поляризация).

Когда использовать круговую поляризацию?

  • При полетах около крупных объектов типа деревьев, зданий, в парках и стадионах
  • Акробатические полеты, когда положение коптера постоянное меняется
  • Полеты на низкой высоте (вблизи других объектов)

Когда использовать линейную поляризацию?

  • При полетах на большие расстояния в прямой видимости, без крупных препятствий
  • Прямолинейные полеты, без флипов и ролов
  • Когда вес, размер и прочность антенны стоят на первом месте

История изменений

  • Октябрь 2013 — написана первая версия
  • Май 2017 — статья обновлена

Cтраница 2


Круговой поляризации соответствует постоянная величина эдс независимо от угла поворота антенны.  

Оптическая схема для измерения КД. Излучение входит слева, отклоняется вниз зеркалами М и М, плоско поляризуется составной призмой Р и проходит через параллелепипед Френеля R, где подвергается двум внутренним отражениям, что приводит к сдвигу по фазе на четверть длины волны, т. е. к круговой поляризации. С помощью экрана А устраняется нежелательное излучение и пропускается нужное. Всю эту схему целиком помещают в кюветное отделение стандартных спектрофотометров, вторая схема (с противоположной ориентацией нужна для сравнения. Пробу помещают в точку b при измерении КД или в точку а при изучении пропускания плоскополяризованного излучения.  

Круговую поляризацию проводят в две ступени. Сначала поток излучения нужно сделать плоскополяризованным, а затем поляризованный поток пропустить через устройство, которое разлагает его на компоненты с правой и левой круговой поляризацией. Затем одну из компонент следует сдвинуть по фазе на одну четверть длины волны. Наиболее важное значение имеют три типа устройств для круговой поляризации: параллелепипед Френеля, электрооптический модулятор Покельса и фотоупругий модулятор.  

Круговую поляризацию, а отраженная волна - круговую поляризацию противоположного знака, что обусловлено изменением направления ее распространения на противоположное при прежнем направлении вращения вектора Е в пространстве.  


Круговую поляризацию можно получить, пропустив линейно поляризованный свет через пластинку в четверть волны так, чтобы плоскость поляризации падающего луча составляла угол 45 с главными направлениями в пластинке. Поэтому различают левую и правую эллиптическую (круговую) поляризацию.  

Волна круговой поляризации может быть определена как такое излучение, при котором вектор электрического поля постоянной амплитуды вращается вокруг направления распространения, делая один оборот за период частоты колебаний.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи.  


Направление круговой поляризации можно изменить на обратное, меняя на 90 поляризацию падающего света.  

Перевод круговой поляризации в линейную достигается введением при помощи какого-либо устройства дополнительной разности фаз б л / 2 двух волн, поляризованных во взаимно перпендикулярных направлениях. Обычно для этой цели используется пластинка в четверть длины волны (см. гл. Призма Френеля фактически также служит устройством, обеспечивающим введение дополнительной разности фаз двух волн, поляризованных во взаимно перпендикулярных направлениях. Такой способ обладает тем преимуществом, что достигаемый сдвиг по фазе мало зависит от длины волны падающего света.  

При круговой поляризации длина вектора не меняется. Наиболее распространенными видами поляризации являются вертикальная и горизонтальная.  

Волна круговой поляризации падает на антенну круговой поляризации.  

Антенна круговой поляризации может, конечно, применяться и для приема линейно поляризованных волн, так же как и линейно поляризованная антенна для приема волн круговой поляризации.  

Возбудитель круговой поляризации представляет собой отрезок прямоугольного волновода, на широкой стенке которого закреплен круглый волновод, связанный с ним тремя щелями связи. Расположение щелей рассчитано так, что обеспечивается возбуждение прямой и обратной волн круговой поляризации независимо от частоты во всем рабочем диапазоне частот прибора. На широкой стенке имеется зонд связи с переходом на коаксиальный разъем.  

Демонстрация поляризации волн: шнур от ротора перед щелью колеблется по кругу, а за щелью до точки закрепления - линейно

Поляриза́ция волн - характеристика поперечных волн , описывающая поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны.

Виды поляризации

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды , всегда перпендикулярным к волновому вектору. Волновой вектор показывает направление распространения волны, а вектор амплитуды показывает, в какую сторону происходят колебания. В трёхмерном пространстве имеется ещё одна степень свободы - возможность вращения вектора амплитуды вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

  • несимметричная генерация волн в источнике возмущения;
  • анизотропность среды распространения волн;
  • преломление и отражение на границе двух сред.

Теория явления

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например, поляризованные вертикально и горизонтально. Возможны другие разложения, например, по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса ). Поляризация фотона является одной из реализаций q-бита .

Линейную поляризацию имеет обычно излучение антенн .

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света, прошедшего через поляризаторы, подчиняется закону Малюса . На этом принципе работают жидкокристаллические экраны .

Некоторые живые существа, например пчёлы, способны различать линейную поляризацию света, что даёт им дополнительные возможности для ориентации в пространстве. Обнаружено, что некоторые животные, например рак-богомол , способны различать циркулярно-поляризованный свет, то есть свет с круговой поляризацией. Некоторые люди также обладают способностью различать поляризацию света, в частности, эти люди могут наблюдать невооруженным глазом эффекты, связанные с частичной поляризацией света дневного неба. Так описывает этот эффект Лев Николаевич Толстой в своей повести «Юность»: «и, вглядываясь в растворенную дверь балкона … , и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное желтоватое пятнышко и снова исчезает;»

История открытия поляризации электромагнитных волн

Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Расмус Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO 3), чаще всего имеющими форму правильного ромбоэдра , которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.

Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса . Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).

В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны , то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.

Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.

{ E x = E 1 cos ⁡ (τ + δ 1) E y = E 2 cos ⁡ (τ + δ 2) E z = 0 {\displaystyle {\begin{cases}E_{x}=E_{1}\cos \left(\tau +\delta _{1}\right)\\E_{y}=E_{2}\cos \left(\tau +\delta _{2}\right)\\E_{z}=0\end{cases}}}

Здесь набег фазы τ = k z − ω t {\displaystyle \tau =kz-\omega t} .

Преобразовав и сложив первые два уравнения, можно получить уравнение движения вектора E → {\displaystyle {\vec {E}}} :

(E x E 1) 2 + (E y E 2) 2 − 2 E x E 1 E y E 2 cos ⁡ (δ) = sin 2 ⁡ δ {\displaystyle \left({\frac {E_{x}}{E_{1}}}\right)^{2}+\left({\frac {E_{y}}{E_{2}}}\right)^{2}-2{\frac {E_{x}}{E_{1}}}{\frac {E_{y}}{E_{2}}}\cos(\delta)=\sin ^{2}{\delta }} , где разность фаз δ = δ 1 − δ 2 {\displaystyle \delta =\delta _{1}-\delta _{2}} .

Наряду с S 1 {\displaystyle S_{1}} , S 2 {\displaystyle S_{2}} , S 3 {\displaystyle S_{3}} используют также нормированные параметры Стокса s 1 = S 1 / S 0 {\displaystyle s_{1}=S_{1}/S_{0}} , s 2 = S 2 / S 0 {\displaystyle s_{2}=S_{2}/S_{0}} , s 3 = S 3 / S 0 {\displaystyle s_{3}=S_{3}/S_{0}} . Для поляризованного света s 1 2 + s 2 2 + s 3 2 = 1 {\displaystyle s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=1} .

s - и p -поляризации волн

В оптике и электродинамике s -поляризованная волна (сравните нем. senkrecht - перпендикулярный) имеет вектор электрического поля E, перпендикулярный плоскости падения. s σ -поляризованной, сагиттально поляризованной, волной E-типа , TE-волной (Transverse Electric ) . p -поляризованная волна (сравните лат. parallel - параллельный) имеет вектор электрического поля E, параллельный плоскости падения. p -поляризованную волну также называют π -поляризованной, поляризованной в плоскости падения, волной H-типа , TM-волной (Transverse Magnetic ) .

Термины TM-волна и TE-волна в работах ряда авторов меняются местами. Дело в том, что классически плоская граница предполагает однородность структуры в двух направлениях. В этом случае определяют плоскость падения и перпендикулярность напряженностей по отношению к ней. Разделение электромагнитного поля на два несвязанных решения возможно в более общем случае структуры, однородной в одном направлении. В этом случае удобно определять перпендикулярность напряжённостей по отношению к направлению однородности . Распространение последнего определения на частный классический случай приводит к тому, что напряженность, перпендикулярная к направлению однородности, оказывается в плоскости падения. Отмечается, что в случае металлической поверхности существенны только волны с электрической напряженностью, перпендикулярной к границе металла . Такие волны также удобнее называть TE-волнами. Термины TM и TE связаны также с обозначением поперечных мод в лазерном резонаторе или волноводе.

В сейсмологии p -волна (от англ. primary - первичный) - продольная волна, приходящая от эпицентра землетрясения первой. s -волна (от англ. secondary - вторичный) - поперечная волна (shear wave), имеющая меньшую скорость распространения, чем продольная, и поэтому приходящая от эпицентра позднее.

До появления проекта НТВ-Плюс российским энтузиастам спутникового телевидения редко приходилось сталкиваться с круговой поляризацией - наибольший интерес для индивидуального приема представляют европейские спутники с линейно поляризованным излучением. Однако особенности приема сигналов с круговой поляризацией ярко проявились с началом цифрового вещания НТВ-Плюс. При приеме сигнала со спутника BONUM-1 на ту же антенну, что используется для приема европейских спутников (с конвертором без деполяризатора), картинка "рассыпается" даже при очень большом уровне сигнала.

При приеме сигналов "старых" спутников "Галс", TDF-2 и Hot Bird на одну подвижную антенну деполяризатор был не нужен. Во-первых, сигнал "Галсов" намного мощнее сигнала спутников Hot Bird и, даже с потерями 3 дБ, принимался не хуже. Во-вторых, несущие частоты транспондеров "Галсов" и TDF-2 разнесены довольно далеко, не менее чем на 36 МГц (11767 LZ и 11803 RZ). Это больше, чем ширина полосы пропускания приемника (27 МГц), поэтому даже при одновременном приеме сигналов в обеих поляризациях без развязки они не перекрывались по частоте. Эта особенность позиции 360 в.д. успешно использовалась при коллективном приеме - для одновременного приема сигналов с правой и левой поляризацией использовалась антенна с запасом усиления 3 дБ (диаметр примерно в 1,5 раза больше минимально необходимого) и штатный конвертор НТВ-Плюс, из которого намеренно удалялся деполяризатор. Отпадала необходимость использовать спаренные конверторы, разделители поляризаций, мультисвитчинги и т.д.

Транспондеры спутника BONUM-1 расположены "вплотную". Центральные частоты транспондеров с разной поляризацией разнесены всего на 19 МГц. При приеме сигнала, например, с правой круговой поляризацией часть мощности сигнала соседнего по частоте транспондера с левой круговой поляризацией попадет в полосу пропускания приемника. Такой сигнал не является полезным сигналом, следовательно, его можно рассматривать как шум. Увеличение диаметра антенны в данном случае не улучшает качество приема, так как уровень шума растет пропорционально уровню сигнала.

У волны с круговой поляризацией вектор электрического поля имеет постоянную величину, но изменяет направление (вращается), делая один оборот на 3600 за один период несущей частоты. Можно представить волну с круговой поляризацией как сумму двух линейно поляризованных волн, векторы Е’ и E" которых расположены ортогонально, а фаза колебаний отличается на p/2 (правая круговая поляризация) или на 3p/2 (левая круговая поляризация). На рис. 1 показан один период волны с круговой поляризацией. Вектор E’ расположен вертикально, а вектор E" - горизонтально. Из рисунка видно, что суммарный вектор Eкр постоянно изменяет свое направление, делая полный оборот за один период. Теперь предположим, что сигнал с круговой поляризацией будет приниматься на переключаемый конвертор.* Так как его штыри расположены ортогонально (под углом 900), можно расположить векторы составляющих E’ и E" параллельно "вертикальному" и "горизонтальному" штырям конвертора соответственно. Нетрудно догадаться, что сигнал будет приниматься на оба штыря одинаково, составляющая E’ будет возбуждать штырь вертикальной поляризации, составляющая E" - штырь горизонтальной поляризации. Амплитуда каждого из векторов E’ и E" будет меньше амплитуды вектора Eкр в Ц2 раз, т. е. потери по мощности составят 3 дБ (мощность сигнала разделится поровну между двумя штырями).

Чтобы избежать потерь при приеме сигнала с круговой поляризацией, используются устройства - деполяризаторы. Наиболее простой деполяризатор - диэлектрический. Он представляет собой секцию круглого волновода с диэлектрической пластиной внутри (рис. 2). Допустим, что в таком волноводе распространяется волна с круговой поляризацией. Разложим ее на две составляющих, направив вектор E’ параллельно пластине деполяризатора, а вектор E" - перпендикулярно ей. Фазовая скорость составляющей, вектор E’ которой направлен параллельно пластине, не изменится и останется равной скорости распространения волны в волноводе Св. Скорость же волны, вектор E" которой перпендикулярен пластине, будет больше или меньше скорости Св, это зависит от размеров волновода, толщины и диэлектрической проницаемости материала пластины. Соответственно длина волны будет больше или меньше, чем длина волны в свободном пространстве. Необходимо задержать или ускорить составляющую E" таким образом, чтобы к концу секции деполяризатора обе составляющих E’ и E" отличались по фазе на 0 или на p. В этом случае на выходе деполяризатора они окажутся в фазе или в противофазе, и суммарный вектор будет иметь постоянное направление (450 по отношению к каждой составляющей, см. рис. 2). Таким образом, длина пластины подбирается с таким расчетом, чтобы задержка составляющей E" составляла p/2, т. е. количество длин волн составляющих E’ и E", укладывающихся на длине пластины L, должно отличаться на l/4. В конверторе Cambridge AE37 (штатный конвертор НТВ-Плюс) используется пластина из полистирола толщиной 1 мм и длиной 46 мм. Пластина располагается в волноводе таким образом, чтобы угол между плоскостью пластины и плоскостью, в которой расположен "вертикальный" штырь конвертора, составлял 450. При таком расположении пластины деполяризатор преобразует волну с правой круговой поляризацией в волну с линейной вертикальной поляризацией, а волну с левой круговой - в волну с линейной горизонтальной.

Нетрудно убедиться, что деполяризатор - обратимое устройство. Если на входе секции деполяризатора присутствует линейно поляризованная волна, вектор Eл которой расположен под углом 450 к диэлектрической пластине, то на выходе секции волна приобретает круговую поляризацию. Как принимается сигнал с круговой поляризацией на переключаемый конвертор с двумя штырями, уже рассматривалось выше. Таким образом, если линейно поляризованный сигнал (например, со спутников Hot Bird) принимать на конвертор с деполяризатором, потери по мощности составят не менее 3 дБ, и сигналы обеих поляризаций (и вертикальной и горизонтальной) будут приниматься одинаково на оба штыря, мешая приему друг друга.

Заметим, что если диэлектрическую пластину расположить параллельно или перпендикулярно направлению вектора Е линейно поляризованной волны, она будет вносить минимальное затухание, не изменяя при этом направление поляризации. Значит, деполяризатор можно "отключить" на время приема спутника с линейной поляризацией, установив пластину параллельно штырю вертикальной поляризации (или перпендикулярно ему). Это можно сделать с помощью комбинации устройств "диэлектрический деполяризатор + механический или магнитный поляризатор". При первоначальной настройке пластина деполяризатора устанавливается по направлению вектора Е вертикально поляризованной волны. Для приема сигналов с линейной поляризацией механическим поляризатором приемный штырь разворачивается параллельно или перпендикулярно пластине. Для приема сигналов с круговой поляризацией штырь устанавливается таким образом, чтобы угол между ним и плоскостью пластины составлял 450 в ту или иную сторону. Если используется магнитный поляризатор, штырь конвертора остается неподвижным, а направление поляризации линейно поляризованной волны (прошедшей параллельно или перпендикулярно пластине деполяризатора или сформированной из волны с круговой поляризацией) приводится магнитным поляризатором в плоскость штыря.

Использование обоих этих устройств связано с некоторыми ограничениями.

  • Первое: для управления как магнитным, так и механическим поляризатором ресивер должен иметь соответствующий интерфейс. У цифровых ресиверов, за редкими исключениями (например, PRAXIS DVB9800 ADP), такого интерфейса нет. Для управления магнитным поляризатором в упрощенном варианте можно использовать выход ресивера 0/12 В с некоторыми доработками.
  • Второе: и тот и другой поляризаторы рассчитаны на работу с конверторами без переключения поляризации (с прямоугольным фланцем). Как правило, если такой конвертор двухдиапазонный, то гетеродины верхнего и нижнего диапазона переключаются напряжением питания 13/18 В. У большинства цифровых ресиверов этот управляющий сигнал используется только для переключения поляризации. Это обстоятельство сильно усложняет программирование ресивера.
  • Третье: оба эти устройства вносят собственные потери от 0,2 до 0,5 дБ, уменьшая добротность приемной установки в целом.

В большинстве случаев выгоднее использовать для приема спутников в позиции 360 в.д. отдельную антенну или отдельный конвертор. Все без исключения цифровые ресиверы поддерживают протокол DiSEqC, поэтому проблем с коммутацией антенн не возникнет.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!