Открытый и закрытый ключ шифрования. Криптография с открытым ключом Что такое ключ в криптографии

(MAC). При использовании одного и того же алгоритма результат шифрования зависит от ключа. Для современных алгоритмов сильной криптографии утрата ключа приводит к практической невозможности расшифровать информацию.

Для современных симметричных алгоритмов (AES , CAST5 , IDEA , Blowfish , Twofish) основной характеристикой криптостойкости является длина ключа. Шифрование с ключами длиной 128 бит и выше считается сильным , так как для расшифровки информации без ключа требуются годы работы мощных суперкомпьютеров. Для асимметричных алгоритмов, основанных на проблемах теории чисел (проблема факторизации - RSA , проблема дискретного логарифма - Elgamal) в силу их особенностей минимальная надёжная длина ключа в настоящее время - 1024 бит. Для асимметричных алгоритмов, основанных на использовании теории эллиптических кривых (ECDSA , ГОСТ Р 34.10-2001 , ДСТУ 4145-2002), минимальной надёжной длиной ключа считается 163 бит, но рекомендуются длины от 191 бит и выше.

Классификация ключей

Криптографические ключи различаются согласно алгоритмам, в которых они используются.

  • Секретные (Симметричные) ключи - ключи, используемые в симметричных алгоритмах (шифрование, выработка кодов аутентичности). Главное свойство симметричных ключей: для выполнения как прямого, так и обратного криптографического преобразования (шифрование/расшифровывание, вычисление MAC/проверка MAC) необходимо использовать один и тот же ключ (либо же ключ для обратного преобразования легко вычисляется из ключа для прямого преобразования, и наоборот). С одной стороны, это обеспечивает более высокую конфиденциальность сообщений, с другой стороны, создаёт проблемы распространения ключей в системах с большим количеством пользователей.
  • Асимметричные ключи - ключи, используемые в асимметричных алгоритмах (шифрование, ЭЦП); вообще говоря, являются ключевой парой , поскольку состоят из двух ключей:
    • Закрытый ключ (en:Private key) - ключ, известный только своему владельцу. Только сохранение пользователем в тайне своего закрытого ключа гарантирует невозможность подделки злоумышленником документа и цифровой подписи от имени заверяющего.
    • Открытый ключ (en:Public key) - ключ, который может быть опубликован и используется для проверки подлинности подписанного документа, а также для предупреждения мошенничества со стороны заверяющего лица в виде отказа его от подписи документа. Открытый ключ подписи вычисляется, как значение некоторой функции от закрытого ключа, но знание открытого ключа не дает возможности определить закрытый ключ.

Главное свойство ключевой пары: по секретному ключу легко вычисляется открытый ключ, но по известному открытому ключу практически невозможно вычислить секретный. В алгоритмах ЭЦП подпись обычно ставится на секретном ключе пользователя, а проверяется на открытом. Таким образом, любой может проверить, действительно ли данный пользователь поставил данную подпись. Тем самым асимметричные алгоритмы обеспечивают не только целостность информации, но и её аутентичность. При шифровании же наоборот, сообщения шифруются на открытом ключе, а расшифровываются на секретном. Таким образом, расшифровать сообщение может только адресат и больше никто (включая отправителя). Использование асимметричных алгоритмов снимает проблему распространения ключей пользователей в системе, но ставит новые проблемы: достоверность полученных ключей. Эти проблемы более-менее успешно решаются в рамках инфраструктуры открытых ключей (PKI).

  • Сеансовые (сессионные) ключи - ключи, вырабатываемые между двумя пользователями, обычно для защиты канала связи. Обычно сеансовым ключом является общий секрет - информация, которая вырабатывается на основе секретного ключа одной стороны и открытого ключа другой стороны. Существует несколько протоколов выработки сеансовых ключей и общих секретов, среди них, в частности, алгоритм Диффи - Хеллмана .
  • Подключи - ключевая информация, вырабатываемая в процессе работы криптографического алгоритма на основе ключа. Зачастую подключи вырабатываются на основе специальной процедуры развёртывания ключа.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Ключ (криптография)" в других словарях:

    Ключ: В Викисловаре есть статья «ключ» Ключ, родник место, где подземные воды вытекают на поверхность земли … Википедия

    Ключ инструмент для открывания замка. Гаечный ключ, разводной ключ инструмент для откручивания болтовых соединений. Ключ (криптография) информация, используемая алгоритмом для преобразования сообщения при шифровании или расшифровании. Ключ… … Википедия

    У этого термина существуют и другие значения, см. Ключ (значения). Ключ в замочной скважине В … Википедия

    - (греч., от kryptos тайный, и grapho пишу). Писание условными знаками (шифрованное), известное только тем лицам, которые получают особый для чтения ключ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИПТОГРАФИЯ… … Словарь иностранных слов русского языка

    Немецкая криптомашина Lorenz использовалась во время Второй мировой войны для шифрования самых секретных сообщений Криптография (от др. греч … Википедия

    Основная статья: История криптографии Фотокопия телеграммы Циммермана Во время первой мировой войны криптография, и, в особенности, криптоанализ становится одним из инструментов ведения войны. Известны факты … Википедия

    Содержание 1 Российская империя 1.1 Армия 1.2 Флот 2 Британская империя 3 Ф … Википедия

    КРИПТОГРАФИЯ - (от греч. «криптос» тайный, скрытый) искусство письма секретными кодами и их дешифровка. Отсюда произошло понятие «криптограмма», т. е. что либо написанное шифром или в другой форме, которая понятна только тому, кто имеет к написанному ключ. В… … Символы, знаки, эмблемы. Энциклопедия

    Криптография с открытым ключом/PUBLIC KEY CRYPTOGRAPHY - разработана Уайтфильдом Диффи (Whitfielf Diffi). Использует пару ключей, причем каждая пара обладает следующими свойствами: что либо зашифрованное одним из них может быть расшифровано с помощью другого; имея один ключ из пары, называемый открытым … Толковый словарь по информационному обществу и новой экономике

    У этого термина существуют и другие значения, см. Ключ. Ключ в замочной скважине … Википедия

В качестве секретной информации используются криптографические ключи.

Криптографический ключ представляет собой последовательность символов, выработанную по определенным правилам. Эта последовательность используется при криптографических преобразованиях текстов. Для каждого криптографического алгоритма существуют свои требования, в соответствии с которыми создаются ключи. Каждый ключ создается для определенного алгоритма.

Для того чтобы обеспечить невоспроизводимость электронной подписи и невозможность прочтения зашифрованных текстов посторонними людьми, в криптографии применяются криптографические ключи.

Современный криптографический ключ - это последовательность чисел определенной длины, созданная по определенным правилам на основе последовательности случайных чисел. Для каждого ключа последовательность случайных чисел создается заново, ни одна последовательность не используется более одного раза. Для генерации последовательностей случайных чисел используются специальные программные объекты или устройства, называемые датчиками случайных чисел.

Каждый алгоритм предъявляет собственные требования к ключам, поэтому любой криптографический ключ создается для определенного алгоритма и используется только с этим алгоритмом.

Если выработка электронной подписи и ее проверка, или зашифрование и расшифрование текста выполняются с помощью одного и того же ключа, такой подход называется симметричной криптографией (соответственно симметричные алгоритмы и симметричные ключи). Операции симметричной криптографии выполняются быстро и сравнительно просты. Но они требуют знания ключа по меньшей мере двумя людьми, что значительно повышает риск их компрометации (т.е. доступа к ним посторонних лиц).

Поэтому сейчас в основном используется асимметричная криптография . В асимметричной криптографии выработка электронной подписи или зашифрование выполняются на одном ключе, а проверка подписи или расшифрование - на другом, парном ключе.



В асимметричной криптографии применяются так называемые ключевые пары (key pairs). Каждая такая пара состоит из двух связанных между собой ключей. Один из этих ключей - закрытый (private key). Он известен только владельцу ключа и ни при каких условиях не должен быть доступен никому другому. Другой ключ - открытый (public key), он может быть доступен

любому желающему.

Методы аутентификации

Аутентификация - выдача определённых прав доступа абоненту на основе имеющегося у него идентификатора. IEEE 802.11 предусматривает два метода аутентификации:

1. Открытая аутентификация (англ. Open Authentication ):

Рабочая станция делает запрос аутентификации, в котором присутствует только MAC-адрес клиента. Точка доступа отвечает либо отказом, либо подтверждением аутентификации. Решение принимается на основе MAC-фильтрации, т.е. по сути это защита на основе ограничения доступа, что не безопасно.

2. Аутентификация с общим ключом (англ. Shared Key Authentication ):

Необходимо настроить статический ключ шифрования алгоритма WEP (англ. Wired Equivalent Privacy ). Клиент делает запрос у точки доступа на аутентификацию, на что получает подтверждение, которое содержит 128 байт случайной информации. Станция шифрует полученные данные алгоритмом WEP (проводится побитовое сложение по модулю 2 данных сообщения с последовательностью ключа) и отправляет зашифрованный текст вместе с запросом на ассоциацию. Точка доступа расшифровывает текст и сравнивает с исходными данными. В случае совпадения отсылается подтверждение ассоциации, и клиент считается подключенным к сети.
Схема аутентификации с общим ключом уязвима к атакам «Man in the middle». Алгоритм шифрования WEP – это простой XOR ключевой последовательности с полезной информацией, следовательно, прослушав трафик между станцией и точкой доступа, можно восстановить часть ключа.
IEEE начал разработки нового стандарта IEEE 802.11i, но из-за трудностей утверждения, организация WECA (англ. Wi-Fi Alliance ) совместно с IEEE анонсировали стандарт WPA (англ. Wi-Fi Protected Access ). В WPA используется TKIP (англ.Temporal Key Integrity Protocol , протокол проверки целостности ключа), который использует усовершенствованный способ управления ключами и покадровое изменение ключа.

WPA также использует два способа аутентификации:

1. Аутентификация с помощью предустановленного ключа WPA-PSK (англ. Pre-Shared Key ) (Enterprise Autentification);

2. Аутентификация с помощью RADIUS-сервера (англ. Remote Access Dial-in User Service )

Виды шифрования

Шифрова́ние - способ преобразования открытой информации в закрытую и обратно. Применяется для хранения важной информации в ненадёжных источниках или передачи её по незащищённым каналам связи. Шифрование подразделяется на процесс зашифровывания и расшифровывания.

В зависимости от алгоритма преобразования данных, методы шифрования подразделяются на гарантированной или временнойкриптостойкости.

В зависимости от структуры используемых ключей методы шифрования подразделяются на

§ симметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, но неизвестна небольшая порция секретной информации - ключа, одинакового для отправителя и получателя сообщения;

§ асимметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, и, возможно, открытый ключ, но неизвестен закрытый ключ, известный только получателю.

Существуют следующие криптографические примитивы:

§ Бесключевые

1. Хеш-функции

2. Односторонние перестановки

3. Генераторы псевдослучайных чисел

§ Симметричные схемы

1. Шифры (блочные,потоковые)

2. Хеш-функции

4. Генераторы псевдослучайных чисел

5. Примитивы идентификации

§ Асимметричные схемы

3. Примитивы идентификации

Шифрование данных на диске
Система Zserver - средство защиты конфиденциальной информации, хранимой и обрабатываемой на корпоративных серверах, методом шифрования данных на диске. Zserver работает по принципу «прозрачного» шифрования разделов жестких дисков. Система автоматически, в online режиме, осуществляет шифрование информации при записи на диск и расшифровывает при чтении с него. Это обеспечивает хранение данных на диске в зашифрованном виде и невозможность использования их без ключа шифрования даже при изъятии сервера или носителя. Система Zserver обеспечивает шифрование файлов и папок на диске, а также всей служебной информации - таблицы размещения файлов и т. д. Таким образом, система Zserver не только надежно защищает конфиденциальные данные, но и скрывает сам факт их наличия от посторонних. Информация на защищенных дисках хранится в зашифрованном виде и становится доступна, только когда администратор сети предоставит пользователю соответствующие полномочия. Права доступа к защищенным дискам устанавливаются средствами операционной системы. Шифрование файлов и папок на диске осуществляется программным драйвером. Ключи шифрования данных на диске вводятся при загрузке сервера со смарт-карты, защищенной PIN-кодом. Не зная PIN-кода, воспользоваться смарт-картой нельзя. Три попытки неправильного ввода PIN-кода заблокируют карту. Смарт-карта необходима только при подключении защищенных носителей, и в процессе работы не требуется. При перезагрузке сервера без смарт-карты, защищенные диски не будут доступны. Система Zserver предоставляет возможность удаленного ввода ключей шифрования и администрирования системы с любой рабочей станции локальной сети, или через Интернет. В настоящее время разработаны системы Zserver, которые работают под управлением следующих операционных систем: Windows 2000/XP/2003/2008 (32- и 64-разрядные); Linux с ядром 2.6.x.

Данные в этом случае рассматриваются как сообщения, и для защиты их смысла используется классическая техника шифрования .

Криптография предполагает наличие трех компонентов: данных, ключа и криптографического преобразования. При шифровании исходными данными будет сообщение, а результирующими - шифровка. При расшифрований они меняются местами. Считается, что криптографическое преобразование известно всем, но, не зная ключа, с помощью которого пользователь закрыл смысл сообщения от любопытных глаз, требуется потратить невообразимо много усилий на восстановление текста сообщения. (Следует еще раз повторить, что нет абсолютно устойчивого от вскрытия шифрования. Качество шифра определяется лишь деньгами, которые нужно выложить за его вскрытие от $10 и до $1000000.) Такое требование удовлетворяется рядом современных криптографических систем, например, созданных по "Стандарту шифрования данных Национального бюро стандартов США" DES и ГОСТ 28147-89. Так как ряд данных критичен к некоторым их искажениям, которые нельзя обнаружить из контекста, то обычно используются лишь такие способы шифрования, которые чувствительны к искажению любого символа. Они гарантируют не только высокую секретность, но и эффективное обнаружение любых искажений или ошибок.

Параметры алгоритмов

Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

§ стойкость

§ длина ключа

§ число раундов

§ длина обрабатываемого блока

§ сложность аппаратной/программной реализации

§ сложность преобразования

[Распространенные алгоритмы

§ AES (англ. Advanced Encryption Standard ) - американский стандарт шифрования

§ ГОСТ 28147-89 - отечественный стандарт шифрования данных

§ DES (англ. Data Encryption Standard ) - стандарт шифрования данных в США до AES

§ 3DES (Triple-DES, тройной DES)

§ RC6 (Шифр Ривеста)

§ IDEA (англ. International Data Encryption Algorithm )

§ SEED - корейский стандарт шифрования данных

открытым ключом , заметил, что это требование отрицает всю суть криптографии, а именно возможность поддерживать всеобщую секретность при коммуникациях.

Второй задачей является необходимость создания таких механизмов, при использовании которых невозможно было бы подменить кого-либо из участников, т.е. нужна цифровая подпись . При использовании коммуникаций для решения широкого круга задач, например в коммерческих и частных целях, электронные сообщения и документы должны иметь эквивалент подписи, содержащейся в бумажных документах. Необходимо создать метод, при использовании которого все участники будут убеждены, что электронное сообщение было послано конкретным участником. Это более сильное требование, чем аутентификация .

Диффи и Хеллман достигли значительных результатов, предложив способ решения обеих задач, который радикально отличается от всех предыдущих подходов к шифрованию.

Сначала рассмотрим общие черты алгоритмов шифрования с открытым ключом и требования к этим алгоритмам. Определим требования, которым должен соответствовать алгоритм , использующий один ключ для шифрования, другой ключ - для дешифрования , и при этом вычислительно невозможно определить дешифрующий ключ , зная только алгоритм шифрования и шифрующий ключ .

Кроме того, некоторые алгоритмы, например RSA , имеют следующую характеристику: каждый из двух ключей может использоваться как для шифрования, так и для дешифрования .

Сначала рассмотрим алгоритмы, обладающие обеими характеристиками, а затем перейдем к алгоритмам открытого ключа , которые не обладают вторым свойством.

При описании симметричного шифрования и шифрования с открытым ключом будем использовать следующую терминологию. Ключ , используемый в симметричном шифровании , будем называть секретным ключом . Два ключа, используемые при шифровании с открытым ключом , будем называть открытым ключом и закрытым ключом . Закрытый ключ держится в секрете, но называть его будем закрытым ключом , а не секретным, чтобы избежать путаницы с ключом, используемым в симметричном шифровании . Закрытый ключ будем обозначать KR , открытый ключ - KU .

Будем предполагать, что все участники имеют доступ к открытым ключам друг друга, а закрытые ключи создаются локально каждым участником и, следовательно, распределяться не должны.

В любое время участник может изменить свой закрытый ключ и опубликовать составляющий пару открытый ключ , заменив им старый открытый ключ .

Диффи и Хеллман описывают требования, которым должен удовлетворять алгоритм шифрования с открытым ключом .

  1. Вычислительно легко создавать пару (открытый ключ KU, закрытый ключ KR ).
  2. Вычислительно легко, имея открытый ключ и незашифрованное сообщение М , создать соответствующее зашифрованное сообщение:
  3. Вычислительно легко дешифровать сообщение, используя закрытый ключ :

    М = D KR [C] = D KR ]

  4. Вычислительно невозможно, зная открытый ключ KU , определить закрытый ключ KR .
  5. Вычислительно невозможно, зная открытый ключ KU и зашифрованное сообщение С , восстановить исходное сообщение М .

    Можно добавить шестое требование, хотя оно не выполняется для всех алгоритмов с открытым ключом :

  6. Шифрующие и дешифрующие функции могут применяться в любом порядке:

    М = Е KU ]

Это достаточно сильные требования, которые вводят понятие . Односторонней функцией называется такая функция, у которой каждый аргумент имеет единственное обратное значение, при этом вычислить саму функцию легко, а вычислить обратную функцию трудно.

Обычно "легко" означает, что проблема может быть решена за полиномиальное время от длины входа. Таким образом, если длина входа имеет n битов, то время вычисления функции пропорционально n a , где а - фиксированная константа. Таким образом, говорят, что алгоритм принадлежит классу полиномиальных алгоритмов Р. Термин "трудно" означает более сложное понятие. В общем случае будем считать, что проблему решить невозможно, если усилия для ее решения больше полиномиального времени от величины входа. Например, если длина входа n битов, и время вычисления функции пропорционально 2 n , то это считается вычислительно невозможной задачей. К сожалению, тяжело определить, проявляет ли конкретный алгоритм такую сложность. Более того, традиционные представления о вычислительной сложности фокусируются на худшем случае или на среднем случае сложности алгоритма. Это неприемлемо для криптографии, где требуется невозможность инвертировать функцию для всех или почти всех значений входов.

Вернемся к определению односторонней функции с люком , которую, подобно односторонней функции , легко вычислить в одном направлении и трудно вычислить в обратном направлении до тех пор, пока недоступна некоторая дополнительная информация. При наличии этой дополнительной информации инверсию можно вычислить за полиномиальное время. Таким образом, односторонняя функция с люком принадлежит семейству односторонних функций f k таких, что

Мы видим, что разработка конкретного алгоритма с открытым ключом зависит от открытия соответствующей односторонней функции с люком .

Криптоанализ алгоритмов с открытым ключом

Как и в случае симметричного шифрования , алгоритм шифрования с открытым ключом уязвим для лобовой атаки. Контрмера стандартная: использовать большие ключи.

Криптосистема с открытым ключом применяет определенные неинвертируемые математические функции . Сложность вычислений таких функций не является линейной от количества битов ключа, а возрастает быстрее, чем ключ. Таким образом, размер ключа должен быть достаточно большим, чтобы сделать лобовую атаку непрактичной, и достаточно маленьким для возможности практического шифрования. На практике размер ключа делают таким, чтобы лобовая атака была непрактичной, но в результате скорость шифрования оказывается достаточно медленной для использования алгоритма в общих целях. Поэтому шифрование с открытым ключом в настоящее время в основном ограничивается приложениями управления ключом и подписи, в которых требуется шифрование небольшого блока данных.

Другая форма атаки состоит в том, чтобы найти способ вычисления закрытого ключа , зная открытый ключ . Невозможно математически доказать, что данная форма атаки исключена для конкретного алгоритма открытого ключа . Таким образом, любой алгоритм, включая широко используемый алгоритм RSA , является подозрительным.

Наконец, существует форма атаки, специфичная для способов использования систем с открытым ключом . Это атака вероятного сообщения. Предположим, например, что посылаемое сообщение состоит исключительно из 56-битного ключа сессии для алгоритма симметричного шифрования. Противник может зашифровать все возможные ключи , используя открытый ключ , и может дешифровать любое сообщение, соответствующее передаваемому зашифрованному тексту. Таким образом, независимо от размера ключа схемы открытого ключа , атака сводится к лобовой атаке на 56-битный симметричный ключ . Защита от подобной атаки состоит в добавлении определенного количества случайных битов в простые сообщения.

Основные способы использования алгоритмов с открытым ключом

Основными способами использования алгоритмов с открытым ключом являются шифрование/ дешифрование , создание и проверка подписи и обмен ключа.

Шифрование с открытым ключом состоит из следующих шагов:


Рис. 7.1.

  1. Пользователь В создает пару ключей KU b и KR b , используемых для шифрования и дешифрования передаваемых сообщений.
  2. Пользователь В делает доступным некоторым надежным способом свой ключ шифрования, т.е. открытый ключ KU b . Составляющий пару закрытый ключ KR b держится в секрете.
  3. Если А хочет послать сообщение В , он шифрует сообщение, используя открытый ключ В KU b .
  4. Когда В получает сообщение, он дешифрует его, используя свой закрытый ключ KR b . Никто другой не сможет дешифровать сообщение, так как этот закрытый ключ знает только В .

Если пользователь (конечная система) надежно хранит свой закрытый ключ , никто не сможет подсмотреть передаваемые сообщения.

Создание и проверка подписи состоит из следующих шагов:


Рис. 7.2.
  1. Пользователь А создает пару ключей KR A и KU A , используемых для создания и проверки подписи передаваемых сообщений.
  2. Пользователь А делает доступным некоторым надежным способом свой ключ проверки, т.е.

Криптографические ключи могут отличатся друг от друга по своей длине, что следовательно и по силе данного ключа. Чем больше длина ключа, тем больше возможных комбинаций подбора. К примеру, если использовать ключ длины 128 битов, то ключ будет один из 2128 возможных вариантов. Похититель скорее всего выиграет в лотерею, чем подберет возможный ключ. На стандартном домашнем ПК для ключа длиной 40 бит нужно потратить 6 часов времени для перебора всех возможных. При этом даже ключи с длиной 128 бит могут быть уязвимыми, и профессионалы могут их взломать.

Надежность симметрической на прямую зависит от стойкости длины ключа и алгоритма при шифровании. Если к примеру что алгоритм идеален, то дешифровать его можно только методом перебора всех ключей. Для реализации такого метода нужно немного шифротекста, и открытый текст. К примеру если длина ключа 128 бит, то суперкомпьютеру понадобится 1025 лет для перебора всех ключей. Сразу возникает вопрос, почему не использовать длину ключа over9999, или же в 4000 байт.
При этом криптография очень тонкая наука, там где мы захотим повысить надежность, мы можем минимальными изменениями в алгоритме наоборот понизить. При проверки стойкости алгоритма шифрования, проверяют условия при котором злоумышленник может получить достаточное количество открытого текста или шифротекста. К счастью, в реалиях существует очень мало людей, которые действительно обладают высокой квалификацией что бы реализовать удачные атаки для дешифрования данных.

Многие алгоритмы шифрования с открытым ключом реализуют функции разложения на множители числа, которое является произведением двух больших простых чисел. в 70-х годах для разложения числа из 125 цифр нужно было десятки квадрильонов лет. На сегодня это не состоит большого времени. Выше был задан вопрос, почему же не использовать overr9999 длинные ключи, ведь тогда не будет повставать вопрос со стойкостью и надежностью. Нужно учитывать не только надежность и секретность, но и время ценности информации и время затраченное на реализацию такого шифрования. К примеру информация потеряет ценность через 10 лет, а мы потратили финансовые ресурсы которые окупятся только через 20 лет, где логика?

Для оценки открытого ключа, нужно измерять криптоаналитическую вычислительную силу в мопс-годах. Это количество операций в секунду, которые выполняются за год. К примеру корпорации имеют — 107 мопс-лет, а правительство 109-мопс лет. На рис.1. видно сколько нужно времени для разложении разных по длине чисел. Зачастую все таки ценную информацию шифруют на долгое время. Идея потратить пару месяцев на разложение большого числа на множителя ради того, что бы получить возможность делать покупки чужой кредитной карточкой есть привлекательной. Рекомендуемая длина открытых ключей показана на рис.2.

Рисунок — 1

Рисунок — 2

Криптоаналитическая атака против алгоритмов шифрования традиционно направлена на самое тонкое или уязвимое место алгоритма. Обычно на предприятиях используют гибридные системы, это системы с использованием открытого и закрытого ключа. Стойкость каждого алгоритма должна соответствовать достаточной надежности. На рис.3. показаны пары длин ключей для несиметричного и симметричного алгоритмов.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!