Простой блок питания из компьютерного. Из компьютерного atx лабораторный блок питания - схемы - каталог статей - ремонт компьютеров и радиотехники

Хороший лабораторный блок питания - это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из , которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания "Codegen" схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.
Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия - даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя "дежурки", который нам понадобится для питания ШИМ контроллера и куллера.
Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 10-20 вольт (обычно около 12-ти).
Мы будем использовать для питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
Если это выходное напряжение будет значительно выше 12-ти вольт, то вентилятор подключать к этому источнику нужно будет через дополнительный резистор, как будет далее в рассматриваемых схемах.
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители "дежурки" - синей линией, а всё остальное, что необходимо будет удалить - красным цветом.

Итак всё, что помечено красным цветом - выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора - резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа - оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа - обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь - при экспериментах с режимом стабилизации тока, на форуме pro-radio , участник форума DWD привёл такую цитату, приведу её полностью:

"Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ - нормально, а меньше - нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше - ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12...13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет...
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А."

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) - перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD , то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской "цешки".
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.

Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы - с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора - увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима - в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
- Самый верхний выпрямитель - это дежурка.
- Величины переменных резисторов показаны, как 3,3 и 10 кОм - стоят такие, какие нашлись.
- Величина резистора R1 указана 270 Ом - он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
- Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
- Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа - резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя - обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 100 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (40-50 вольт например), то нужно будет вместо диодной - сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём - просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать - рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и "поварить" наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) - острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 - 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на "косу" и в том же направлении, что и начинали - мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором "I".
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока - лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала "Плавно", потом когда у него заканчивается предел, начинает регулироваться "Грубо".
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;

Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Удачи Вам в конструировании!

Многие люди, приобретая новую компьютерную технику, выкидывают на помойку свой старый системный блок. Это довольно недальновидно, ведь в нем могут находиться еще работоспособные комплектующие , которые можно использовать для других целей. В частности, речь идет о блоке питания компьютера, из которого можно .

Стоит отметить, что затраты на изготовление своими руками минимальны, что позволяет существенно сэкономить свои денежные средства.

Блок питания компьютера представляет собой преобразователь напряжения, соответственно +5, +12, -12, -5 В. Путем определенных манипуляций, можно из такого БП сделать своими руками вполне рабочее зарядное устройство для своего автомобиля. Вообще, зарядки бывают двух типов:

Зарядные устройства со множеством опций (пуск двигателя, тренировка, подзарядка и т.д.).

Устройство для подзарядки АКБ — подобные зарядки нужны для автомобилей, у которых небольшой километраж между пробегами .

Нас интересует именно второй тип зарядных устройств, потому что большинство транспортных средств эксплуатируются короткими пробегами, т.е. автомобиль завели, проехали определенное расстояние, а затем заглушили. Подобная эксплуатация приводит к тому, что у аккумуляторной батареи автомобиля довольно быстро заканчивается заряд, что особенно характерно для зимнего времени. Поэтому и оказываются востребованными подобные стационарные агрегаты, с помощью которых можно очень оперативно зарядить АКБ, вернув его в рабочее состояние. Сама зарядка осуществляется при помощи тока порядка 5 Ампер, а напряжение на клеммах колеблется от 14 до 14,3 В. Мощность зарядки, которая рассчитывается путем умножения значений напряжения и тока, может быть обеспечена из блока питания компьютера, ведь средняя мощность его составляет порядка 300-350 Вт.

Переделка компьютерного БП в зарядное устройство


При переделке компьютерных импульсных блоков питания (далее - ИБП) с управляющей микросхемой TL494 под блоки питания для питания трансиверов, радиоаппаратуры и зарядные устройства для автомобильных аккумуляторов , накопилась часть ИБП, которые были неисправны и не поддавались ремонту, работали нестабильно или имели управляющую микросхему другого типа.

Дошли руки и до оставшихся блоков питания, из них после недолгих экспериментов вывели технологию переделки под зарядные устройства (далее - ЗУ) для автомобильных аккумуляторов.
Также после выхода на электронную почту начали приходить письма с разными вопросами, мол, что и как, с чего начинать.

С чего начать?

Перед тем как приступить к переделке следует внимательно ознакомиться с книгой , в ней подробно изложено описание работы ИБП с управляющей микросхемой TL494. Также не лишним было бы посещение сайтов и , где подробно рассмотрены вопросы переделки компьютерных ИБП. Для тех радиолюбителей, которые не смогли найти указанную книгу попробуем «на пальцах» объяснить, как «укротить» ИБП.
И так обо всем по порядку.

И так рассмотрим случай, когда АКБ еще не подсоединена. Напряжение сети переменного тока подается через терморезистор TR1, сетевой плавкий предохранитель FU1, помехоподавляющий фильтр к выпрямителю на диодной сборке VDS1. Выпрямленное напряжение сглаживается фильтром на конденсаторах С6, С7, на выходе выпрямителя получается напряжение + 310 В. Это напряжение подается к преобразователю напряжения на мощных ключевых транзисторах VT3, VT4 с импульсным силовым трансформатором Тр2.

Сразу же оговоримся, что для нашего зарядного устройства резисторы R26, R27, предназначенные для приоткрывания транзисторов VT3, VT4, отсутствуют. Переходы база-эмиттер транзисторов VT3, VT4 зашунтированы цепями R21R22 и R24R25, соответственно, вследствие чего, транзисторы закрыты, преобразователь не работает, выходное напряжение отсутствует.

При подсоединении АКБ к выходным клеммам Кл1 и Кл2, при этом загорается светодиод VD12, напряжение подается через цепочку VD6R16 к выводу № 12 для питания микросхемы МС1 и через цепочку VD5R12 к средней обмотке согласующего трансформатора Тр1 драйвера на транзисторах VT1, VT2. Управляющие импульсы с выводов 8 и 11 чипа МС1 поступают на драйвер VT1, VT2, и через согласующий трансформатор Тр1 к базовым цепям силовых ключевых транзисторов VT3, VT4, открывая их поочередно.

Переменное напряжение с вторичной обмотки силового трансформатора Тр2 канала выработки напряжения + 12 В поступает на двухполупериодный выпрямитель на сборке из двух диодов Шоттки VD11. Выпрямленное напряжение сглаживается LC фильтром L1C16 и поступает к выходным клеммам Кл1 и Кл2. С выхода выпрямителя также питается штатный вентилятор М1, предназначенный для охлаждения деталей ИБП, включенный через гасящий резистор R33 для уменьшения скорости вращения лопастей и шума вентилятора.

АКБ через клемму Кл2 подключена к минусу выхода выпрямителя ИБП через резистор R17. При протекании тока заряда от выпрямителя к АКБ, на резисторе R17 образуется падение напряжения, которое подается к выводу № 16 одного из компараторов микросхемы МС1. При превышении тока заряда больше установленного уровня (движком резистора установки тока заряда R4), микросхема МС1 увеличивает паузу между выходными импульсами, уменьшая ток в нагрузку и тем самым стабилизируя ток зарядки АКБ.

Цепь R14R15 стабилизации выходного напряжения R14R15 подключена к выводу № 1 второго компаратора микросхемы МС1, предназначена для ограничения его значения (на уровне + 14,2 - + 16 В) в случае отсоединения АКБ. При увеличении выходного напряжения выше установленного уровня, микросхема МС1 увеличит паузу между выходными импульсами, тем самым стабилизируя напряжения на выходе.
Микроамперметр РА1, с помощью переключателя SA1 подключается к разным точкам выпрямителя ИБП, используется для измерения тока заряда и напряжения на АКБ.

В качестве ШИМ-регулятора управления МС1 используется микросхема типа TL494 или ее аналоги: IR3M02 (SHARP, Япония), µА494 (FAIRCHILD, США), КА7500 (SAMSUNG, Корея), МВ3759 (FUJITSU, Япония, КР1114ЕУ4 (Россия).

Начинаем переделку!

Отпаиваем все провода с выходных разъемов, оставляем по пять проводов желтого цвета (канал выработки напряжения +12 В) и пять проводов черного цвета (GND, корпус, земля), по четыре провода каждого цвета скручиваем вместе и спаиваем, эти концы впоследствии будут подпаяны к выходным клеммам ЗУ.

Снимаем переключатель 115/230V и гнезда для подсоединения шнуров.
На месте верхнего гнезда устанавливаем микроамперметр РА1 на 150 - 200 мкА от кассетных магнитофонов, например М68501, М476/1. Родная шкала снята, вместо нее установлена самодельная шкала, изготовленная с помощью программы FrontDesigner_3.0, файлы шкал можно скачать с сайта журнала . Место нижнего гнезда закрываем жестью размерами 45×25 мм и сверлим отверстия для резистора R4 и переключателя рода измерений SA1. На задней панели корпуса устанавливаем клеммы Кл 1 и Кл 2.

Также, нужно обратить внимание на размер силового трансформатора, (на плате - тот который побольше), на нашей схеме (Рис. 5) это Тр 2. От него зависит максимальная мощность блока питания. Высота его должна быть не менее 3 см. Встречаются блоки питания с трансформатором высотой менее 2 см. Мощность таких 75 Вт, даже если написано 200 Вт .

В случае переделки ИБП типа АТ снимаем резисторы R26, R27 приоткрывающие транзисторы ключевого преобразователя напряжения VT3, VT4. В случае переделки ИБП типа АТХ снимаем с платы детали дежурного преобразователя.

Выпаиваем все детали кроме: цепей помехоподавляющего фильтра, высоковольтного выпрямителя VDS1, C6, C7, R18, R19, инвертора на транзисторах VT3, VT4, их базовых цепей, диодов VD9, VD10, цепей силового трансформатора Тр2, С8, С11, R28, драйвера на транзисторах VT3 или VT4, согласующего трансформатора Тр1, деталей С12, R29, VD11, L1, выходного выпрямителя, согласно схемы (Рис. 5).


У нас должна получиться плата примерно такого вида (Рис. 6). Даже если в качестве управляющего ШИМ-регулятора, переделываемого ИБП, используется микросхема типа DR-B2002, DR-B2003, DR-B2005, WT7514 или SG6105D проще их снять и сделать с нуля на TL494. Блок управления А1 изготавливаем в виде отдельной платы (Рис. 7).



Штатная диодная сборка в выпрямителе +12 В рассчитана на слишком слабый ток (6 - 12 А) - ее использовать не желательно, хотя для зарядного устройства вполне допустимо. На ее место можно установить диодную сборку из 5-вольтового выпрямителя (она на больший ток рассчитана, но имеет обратное напряжение всего 40 В). Так как в некоторых случаях обратное напряжение на диодах в выпрямителе +12 В достигает значения 60 В! , лучше установить сборку на диодах Шоттки на ток 2×30 А и обратное напряжение не менее 100 В, например, 63CPQ100, 60CPQ150 .

Конденсаторы выпрямителя 12-вольтовой цепи заменяем на рабочее напряжение 25 В (16-ти вольтовые нередко вздувались).

Индуктивность дросселя L1 должна быть в диапазоне 60 - 80 мкГн, его обязательно отпаиваем и измеряем индуктивность, часто попадались экземпляры и на 35 - 38 мкГн, с ними ИБП работает неустойчиво, жужжит при увеличении тока нагрузки больше 2 А. При слишком большой индуктивности, более 100 мкГн, может произойти пробой по обратному напряжению сборки диодов Шотки, если она была взята из 5-ти вольтового выпрямителя. Для улучшения охлаждения обмотки выпрямителя +12 В и кольцевого сердечника снимаем неиспользуемые обмотки для выпрямителей -5 В, -12 В и +3,3 В. Возможно придется домотать до оставшейся обмотки несколько витков провода до получения требуемой индуктивности (Рис. 8).


Если ключевые транзисторы VT3, VT4 были неисправными, а оригинальные не удается приобрести, то можно установить более распространенные транзисторы типа MJE13009. Транзисторы VT3, VT4 прикручены к радиатору, как правило, через изоляционную прокладку. Необходимо транзисторы снять и для увеличения теплового контакта, с обеих сторон прокладку промазать термопроводящей пастой. Диоды VD1 - VD6 рассчитанные на прямой ток не менее 0,1 А и обратное напряжение не менее 50 В, например КД522, КД521, КД510.

Все электролитические конденсаторы на шине +12 В заменяем на напряжение 25 В. При монтаже также надо учесть, что резисторы R17 и R32 в процессе работы блока нагреваются, их надо расположить поближе к вентилятору и подальше от проводов.
Светодиод VD12 можно приклеить к микроамперметру РА1 сверху для освещения его шкалы.

Наладка

При наладке ЗУ желательно воспользоваться осциллографом, он позволит увидеть импульсы в контрольных точках и поможет нам значительно сэкономить время. Проверяем монтаж на наличие ошибок. К выходным клеммам подключаем аккумуляторную батарею (далее - АКБ). В первую очередь проверяем наличие генерации на выводе № 5 генератора пилообразного напряжения МС (Рис. 9).

Проверяем наличие указанных напряжений согласно схемы (Рис. 5)на выводах № 2, № 13 и № 14 микросхемы МС1. Движок резистора R14 устанавливаем в положение максимального сопротивления, и проверяем наличие импульсов на выходе микросхемы МС1, на выводах № 8 и № 11 (Рис. 10).

Также проверяем форму сигнала между выводах № 8 и № 11 МС1 (Рис. 11), на осциллограмме видим паузу между импульсами, отсутствие симметрии импульсов может говорить о неисправности базовых цепей драйвера на транзисторах VT1, VT2.


Проверяем форму импульсов на коллекторах транзисторов VT1, VT2 (Рис. 12),

А также форму импульсов между коллекторами этих транзисторов (Рис. 13).


Отсутствие симметрии импульсов может говорить о неисправности самих транзисторов VT1, VT2, диодов VD1, VD2, перехода база-эмиттер транзисторов VT3, VT4 или их базовых цепей. Иногда пробой перехода база-эмиттер транзистора VT3 или VT4 приводит к выходу из строя резисторов R22, R25, диодного моста VDS1 и только потом к перегоранию предохранителя FU1.

Левый, по схеме, вывод резистора R14 подключаем в источнику образцового напряжения на 16 В (почему именно 16 В - чтобы скомпенсировать потери в проводах и на внутреннем сопротивлении сильно сульфатированной АКБ, хотя можно и 14,2 В). Уменьшая сопротивление резистора R14 до момента пропадания импульсов на выводах № 8 и № 11 МС, точнее в этот момент пауза становится равной полупериоду повторения импульсов.

Первое включение, тестирование

Правильно собранное, без ошибок, устройство запускается сразу, но в целях безопасности вместо сетевого предохранителя включаем лампу накаливания напряжением 220 В мощностью 100 Вт, она будет служить нам балластным резистором и в аварийной ситуации спасет детали схемы ИБП от повреждения.

Движок резистора R4 устанавливаем в положение минимального сопротивления, включаем зарядное устройство (ЗУ) в сеть, при этом лампа накаливания должна кратковременно вспыхнуть и погаснуть. При работе ЗУ на минимальном токе нагрузки радиаторы транзисторов VT3, VT4 и диодной сборки VD11 практически не нагреваются. При увеличении сопротивления резистора R4 начинает возрастать ток зарядки, при каком-то уровне вспыхнет лампа накаливания. Ну, вот и все, можно снимать ламу и ставить на место предохранитель FU1.

В случае если вы все-таки решились установить диодную сборку из 5-вольтового выпрямителя (повторимся, что она выдерживает по току, но обратное напряжение всего 40 В), включаем ИБП в сеть на одну минуту, а движком резистором R4 устанавливаем ток в нагрузку 2 - 3 А, выключаем ИБП. Радиатор с диодной сборкой должен быть теплым, но ни в коем случае не горячим. Если он горячий - значит, данная диодная сборка в данном ИБП долго не проработает и обязательно выйдет из строя.

Проверяем ЗУ на максимальном токе в нагрузку, для этого удобно использовать устройство , подключенное параллельно АКБ, которое позволит не испортить батарею длительными зарядами во время наладки ЗУ. Для увеличения максимального тока зарядки, можно несколько увеличить сопротивления резистора R4, но при этом не следует превышать максимальную мощность на которую рассчитан ИБП.

Подбором сопротивлений резисторов R34 и R35 устанавливаем пределы измерения для вольтметра и амперметра соответственно.

Фотки

Монтаж собранного устройства показан на (Рис. 14).



Теперь можно закрывать крышку. Внешний вид ЗУ показан на (Рис. 15).




Аккумуляторная батарея - устройство, которое в ходе эксплуатации изнашивается и разряжается. Для заряда АКБ используется специальный прибор, который можно купить или сделать своими руками. О том, как соорудить зарядное устройство для автомобильного аккумулятора из БП компьютера и ноутбука, мы расскажем ниже.

[ Скрыть ]

Как сделать зарядку для АКБ из блока питания компьютера?

Стоимость качественных зарядных приборов высокая. Поэтому многие автовладельцы решают переделать блок питания АТХ от стационарного ПК в ЗУ. Эта процедура не особо сложная, но прежде чем приступить к выполнению задачи и переделать блок питания на зарядку, которая сможет заряжать машинную АКБ, следует разобраться в требованиях, которые предъявляются к ЗУ. В частности, максимальный уровень напряжения, подводимый к АКБ, должен быть не более 14,4 вольта, чтобы не допустить быстрого износа батареи.

Пользователь Vetal в своем ролике показал, как можно переделать БП в зарядный прибор.

Готовимся к выполнению задачи

Чтобы соорудить самоделку ЗУ из компьютерного БП на 200W, 300W либо 350W (ШИМ 3528), потребуются следующие материалы и инструменты:

  • зажимы («крокодилы») для подключения к АКБ;
  • резисторный элемент на 2,7 кОм, а также на 1 кОм и 0,5 Вт;
  • паяльник с оловом и канифолью;
  • две отвертки (с крестовым и плоским наконечником);
  • резисторные элементы на 200 Ом и 2 Вт, а также на 68 Ом и 0,5 Вт;
  • обычное машинное реле на 12В;
  • два конденсаторных элемента на 25В;
  • три диода 1N4007 на 1 ампер;
  • светодиодный элемент (любого цвета, но лучше - зеленый);
  • силиконовый герметик;
  • вольтамперметр;
  • два гибких медных провода (1 метр каждый).

Также потребуется сам блок питания, который должен иметь следующие характеристики:

  • величина выходного напряжения - 12 вольт;
  • параметр номинального напряжения - 110/220 В;
  • величина мощности - 230 Вт;
  • параметр максимального тока - не выше 8 ампер.

Пошаговая инструкция

Процедура заряда машинной батареи производится под напряжением, величина которого от 13,9 до 14,4 вольта. Все стационарные блоки работают с напряжением 220 В, поэтому первостепенная задача - снизить рабочий параметр до 14,4 В. В основе зарядного девайса применяется микросхема TL494 (7500), при ее отсутствии можно использовать аналог. Микросхема нужна для генерирования сигналов и используется как драйвер транзисторного элемента, предназначенного для защиты прибора от повышенного тока. На дополнительной плате БП имеется еще одна схема - TL431 либо другая, аналогичная, предназначенная для регулировки параметра напряжения на выходе. Здесь же располагается резисторный элемент для настройки, с помощью которого можно отрегулировать величину выходного напряжения в узком интервале.

Подробно о том, как переделать компьютерный БП в зарядный прибор для АКБ машины, узнайте из ролика, опубликованного каналом «Паяльник TV».

Чтобы произвести своими руками переделку БП от компа в зарядку для авто, ознакомьтесь со схемой и следуйте инструкции:

  1. Для начала из компьютерного БП ATX надо демонтировать все лишние составляющие и элементы, после чего от него отпаиваются кабели. Воспользуйтесь паяльником, чтобы не повредить контакты. Надо удалить переключатель 220/110 вольт с кабелями, подключенными к нему. После удаления переключателя вы сможете предотвратить возможность перегорания БП, если случайно переключите его на 110 В.
  2. Затем от устройства отпаиваются и удаляются ненужные кабели. Уберите провод синего цвета, подключенный к конденсаторному элементу, воспользуйтесь паяльником. В некоторых БП к конденсатору подсоединяется два провода, удалить следует оба. Также на плате вы увидите пучок кабелей желтого цвета с выводом на 12 вольт, их должно быть четыре штуки, оставляйте все. Здесь же должно быть четыре провода черного цвета, их тоже надо оставить, поскольку это масса или заземление. Надо оставить еще один зеленый проводок, все остальные убираются.
  3. Обратите внимание на схему. По проводку желтого цвета вы сможете найти два конденсаторных элемента в электроцепи на 12 вольт. Их рабочий параметр напряжения составляет 16 В, поэтому сразу же удалите их путем выпаивания и установите два конденсатора на 25 В. Конденсаторные элементы вздуваются и становятся неработоспособными. Если даже они целые и с виду рабочие, рекомендуем их поменять.
  4. Теперь надо выполнить задачу, чтобы блок питания при каждом включении в бытовую сеть автоматически активировался. Суть в том, что когда БП установлен в компьютере, его активация осуществляется в случае замыкания определенных контактов на выходе. Надо удалить защиту от скачков напряжения. Этот элемент предназначен для автоматического отключения БП компьютера от бытовой сети в случае перенапряжения. Удалить его надо, потому что для оптимальной работы ПК требуется 12 вольт, а для функционирования зарядного устройства надо 14,4 В. Защита, установленная в блоке, воспримет 14,4 вольта как скачок напряжения, в результате чего ЗУ отключится и не сможет зарядить аккумулятор автомобиля.
  5. К оптрону на плате проходят два импульса - действия от защиты по скачкам напряжения отключения, а также активации и деактивации. В общей сложности на схеме имеется три оптрона. Благодаря этим элементам осуществляется связь между входной и выходной составляющими блока. Эти части называются высоковольтными и низковольтными. Для того чтобы защита не срабатывала при скачках напряжения, вам следует замкнуть контакты оптрона, это можно сделать при помощи перемычки, выполненной из припоя. Это действие позволит обеспечить бесперебойную работу БП, когда он будет включен в бытовую сеть.
  6. Теперь надо добиться того, чтобы величина исходящего напряжения составила 14,4 вольта. Для выполнения задачи потребуется плата TL431, установленная на дополнительной схеме. Благодаря этому компоненту выполняется настройка напряжения на всех каналах, идущих от устройства. Для увеличения рабочего параметра потребуется подстроечный резисторный элемент, расположенный на этой же схеме. С его помощью вы сможете увеличить напряжение до 13 вольт, но этого недостаточно для оптимальной работы зарядного устройства. Поэтому резистор, подключенный последовательно с подстроечным компонентом, подлежит замене. Его следует выпаять, а вместо него установить аналогичную деталь, сопротивление которой должно быть ниже 2,7 кОм. Это позволит увеличить диапазон регулировки выходного параметра и получить необходимые 14,4 вольта.
  7. Удалите транзисторный элемент, установленный рядом с платой TL431. Эта деталь может негативно повлиять на функциональность схемы. Транзистор будет мешать устройству поддерживать нужное напряжение на выходе. На фото ниже вы увидите элемент, он отмечен красным.
  8. Чтобы девайс для зарядки АКБ имел стабильное напряжение на выходе, надо повысить рабочий параметр нагрузки по каналу, где проходило напряжение в 12 вольт. Есть дополнительный канал на 5 вольт, но его использовать не надо. Для обеспечения нагрузки потребуется резисторный компонент, рабочая величина сопротивления которого составит 200 Ом, а мощность - 2 Вт. На дополнительный канал устанавливается деталь на 68 Ом, величина мощности которой составляет 0,5 Вт. Когда резисторные элементы будут припаяны, вы сможете отрегулировать величину напряжения на выходе до 14,4 вольта, при этом не потребуется нагрузка.
  9. Затем следует ограничить выходную величину силы тока. Этот параметр индивидуален для любого блока питания. У нас величина силы тока должна быть не более 8 ампер. Чтобы обеспечить это, потребуется повысить номинал резисторного компонента, установленного в первичной цепи обмотки, рядом с трансформаторным устройством. Последнее используется в качестве датчика, предназначенного для определения значения перегрузки. Для увеличения номинальной величины, резистор подлежит замене, вместо него монтируется компонент с сопротивлением на 0,47 Ом, а величина мощности составит 1 Вт. Осторожно выпаивается резистор, вместо него впаивается новый. После выполнения этой задачи деталь будет использоваться в качестве датчика, поэтому величина силы тока на выходе будет не более 10 ампер, даже если произойдет замыкание.
  10. Для обеспечения защиты машинной АКБ от неправильной полярности при подсоединении самодельного зарядного девайса в устройство устанавливается дополнительная схема. Речь идет о плате, которую вам предстоит сделать самостоятельно, поскольку в самом блоке ее нет. Для ее разработки потребуется подготовленное реле на 12 вольт, в котором должно быть четыре клеммы. Также понадобятся диодные компоненты, сила тока которых составит 1 ампер. Как вариант, можно использовать детали 1N4007. Схема должна быть дополнена светодиодом, который будет свидетельствовать о состоянии процесса зарядки. Если лампочка горит, то машинная АКБ подсоединена к зарядному устройству правильно. Помимо этих компонентов, потребуется резисторный элемент, рабочее сопротивление которого составит 1 кОм, а мощность - 0,5 Вт. Принцип действия схемы такой. АКБ подсоединяется через кабели к выходу самодельного зарядного устройства. Происходит активация реле благодаря энергии, которая осталась от аккумулятора. После срабатывания элемента начинается процесс зарядки от ЗУ, о чем свидетельствует активация диодной лампочки.
  11. При деактивации катушки в результате воздействия электродвижущей силы самоиндукции происходит скачок напряжения. Чтобы не допустить его негативного воздействия на работу зарядного девайса, в плату надо добавить два диодных компонента параллельным способом. Реле фиксируется на радиаторном устройстве БП при помощи герметика. Благодаря этому материалу можно обеспечить эластичность, а также невосприимчивость деталей к термическим нагрузкам. Речь идет о сжатии и расширении, о прогревании и охлаждении. Когда клей высохнет, к контактам реле надо подсоединить оставшиеся компоненты. Если герметик отсутствует, для фиксации подойдут обычные болты.
  12. На последнем этапе к блоку подключаются провода с «крокодилами». Лучше применять кабели разных цветов, к примеру, черного и красного или красного и синего. Это позволит не допустить спутывания полярности. Длина провода будет не меньше одного метра, а их сечение должно составить 2,5 мм2. К концам кабелей подключаются зажимы, предназначенные для фиксации на клеммах аккумулятора. Чтобы зафиксировать провода на корпусе самодельного зарядного девайса, в радиаторном устройстве просверливаются два отверстия соответствующего диаметра. Через получившиеся отверстия продеваются две нейлоновые стяжки, с помощью которых кабели будут фиксироваться. В зарядное устройство можно вмонтировать амперметр, он позволит контролировать величину силы тока. Подключение прибора осуществляется параллельным образом к цепи БП.
  13. Остается протестировать работоспособность собранного своими руками ЗУ.

1. Красным отмечена перемычка на схеме 2. Транзисторный элемент на плате, который надо удалить 3. Резисторный элемент в первичной цепи, подлежащий замене 4. Схема для сборки платы, предназначенной для защиты БП при нарушении полярности

Зарядное устройство из БП ноутбука

Можно соорудить зарядный девайс из блока питания ноутбука.

Напрямую подключать БП к аккумуляторным клеммам нельзя.

Величина выходного напряжения варьируется в районе 19 вольт, а значение силы тока составляет около 6 ампер. Этих параметров достаточно, чтобы обеспечить заряд аккумуляторной батареи, но напряжение слишком высокое. Решить проблему можно двумя способами.

Без переделки БП

Потребуется последовательным образом с аккумулятором машины подключить так называемый балласт в виде мощной лампы от оптики. Источник освещения будет использоваться в качестве ограничителя тока. Простой и доступный вариант. К плюсовому выходу блока питания ноутбука подключается один контакт лампы, а второй ее контакт подсоединяется к плюсу аккумуляторной батареи. Минус от блока питания подключается напрямую к отрицательной клемме аккумулятора по проводу. После этого БП можно включать в бытовую сеть. Способ очень простой, но есть вероятность выхода из строя источника освещения. Это приведет к неработоспособности как аккумулятора, так и блока.

С переделкой блока питания

Потребуется понизить параметр напряжения БП, чтобы напряжение на выходе составляло около 14-14,5 В.

Рассмотрим процесс изготовления и сборки зарядного девайса на примере блока питания от ноутбука Great Wall:

  1. Сначала следует разобрать корпус блока питания. При разборке не повредите его, поскольку он будет использоваться для дальнейшей эксплуатации. Плату, которая расположена внутри, можно подключить к вольтметру, чтобы точно узнать, какое ее рабочее напряжение. В нашем случае оно составляет 19,2 вольта. Используется плата, построенная на микросхемах TEA1751+TEA1761.
  2. Выполняется задача по снижению величины напряжения. Для этого потребуется найти резисторный элемент, расположенный на выходе. Нужна деталь, соединяющая шестой контакт схемы ТЕА1761 с положительным выводом блока питания. Этот резисторный элемент следует выпаять при помощи паяльника и произвести замер его сопротивления. Рабочий параметр составляет 18 кОм.
  3. Вместо демонтированного элемента устанавливается подстроечный резисторный компонент на 22 кОм, но перед впаиванием его следует настроить на 18 кОм. Аккуратно запаяйте деталь, чтобы не повредить другие элементы схемы.
  4. Постепенно понижая величину сопротивления, надо добиться того, чтобы на выходе параметр напряжения составил 14-14,5 вольт.
  5. Когда вы получите напряжение оптимальное для зарядки автомобильного аккумулятора, запаянный резистор можно отпаять. Производится замер его параметра сопротивления, в нашем случае он составляет 12, 37 кОм. По этой величине или близкой к ней подбирается постоянный резистор. Мы используем два резистора на 10 кОм и 2,6 кОм. Концы обеих деталей устанавливаются в термокембрик, после чего происходит их впаивание в плату.
  6. Полученную в итоге схему рекомендуем протестировать перед сборкой устройства. Параметр напряжения на выходе составит 14,25 вольт, этого достаточно для заряда батарейки.
  7. Приступаем к сборке девайса. Подключите провода с зажимами. Перед их впаиванием убедитесь в том, что на выходе соблюдается полярность. В зависимости от блока ноутбука, минусовой контакт может быть выполнен в виде центрального провода, а положительный - в виде оплетки.
  8. В итоге вы получаете девайс, который может правильно заряжать АКБ. Величина тока в ходе заряда варьируется в районе 2-3 ампер. Если этот параметр падает до 0,2-0,5 ампер, то процедуру подзарядки можно считать завершенной. Для более удобного использования ЗУ оборудуют амперметром, зафиксировав его на корпусе. Можно использовать светодиодную лампу, которая будет говорить автовладельцу о завершении процесса зарядки.

Канал kt819a предоставил ролик, в котором подробно рассмотрено зарядное устройство, сделанное из БП ноутбука.

Как правильно зарядить АКБ самодельной зарядкой?

Чтобы не допустить быстрого выхода из строя АКБ, надо учитывать определенные нюансы по правильной подзарядке.

  1. Сначала отключите клеммы батареи от зажимов. Открутите болты, которые крепят фиксирующую планку аккумулятора.
  2. Демонтируйте устройство из посадочного места, отнесите домой или в гараж.
  3. Прочистите корпус от загрязнений. Обратите внимание на сами клеммы. Если на них есть окисления, их следует очистить. Используйте зубную или строительную щетку, подойдет наждачная бумага мелкой зернистости. Главное - не счистить рабочий налет.
  4. Если аккумулятор обслуживаемый, откройте все его банки и проверьте в них уровень электролита. Рабочий раствор должен покрывать все секции. Если это не так, то заряд батареи может привести к быстрому испарению кипящей жидкости, что отразится на функциональности батареи и ее исправности в целом. При необходимости добавьте в банки дистиллированную воду. Визуально осмотрите корпус батареи на предмет дефектов, иногда утечка жидкости связана с наличием трещин. Если повреждения серьезные, то АКБ подлежит замене.
  5. Подключите зажимы самодельного ЗУ к клеммам АКБ, соблюдая полярность. После этого девайс можно подключать к бытовой сети. Пробки на банках при этом откручивать не надо.
  6. Когда процедура заряда будет завершена, проверьте уровень электролита и если все нормально, то закрутите банки. Установите батарею в автомобиль и убедитесь, что она в рабочем состоянии.

Заключение

Основным плюсом девайса считается то, что автомобильная батарея не сможет перезарядиться в процессе подзарядки. Если вы забудете отключить АКБ от зарядного устройства, это не повлияет на ее ресурс эксплуатации и не приведет к быстрому износу. Если вы не оборудуете ЗУ светодиодным индикатором, то не сможете понять, зарядился ли аккумулятор или нет . Как вариант, можно приблизительно рассчитать время подзарядки, используя показания, которые выдает амперметр, подключенный к ЗУ. Рассчитать можно по формуле: величина силы тока умножается на время зарядки в часах. На практике на реализацию задачи по подзарядке требуется около суток при условии, что емкость батареи составляет 55 А/ч. Если вы хотите наглядно видеть уровень подзаряда, то в девайс можно добавить стрелочные или цифровые индикаторы.

С чего начинается Родина... То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель - конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы - за средний стоваттник требуют около 10уе!

Но выход всё-же есть. Это обычный, стандартный ATX от любого, даже самого простого и древнего компьютера. Несмотря на дешевизну таких БП (бэушный можно найти по фирмам и за 5уе), они обеспечивают очень приличный ток и универсальные напряжения. По линии +12В - 10А, по линии -12В - 1А, по линии 5В - 12А и по линии 3,3В - 15А. Конечно указанные значения не точные, и могут несколько отличаться в зависимости от конкретной модели БП ATX.


Вот как раз недавно я и делал одну интересную вещь - музыкальный центр из и корпуса от небольшой колонки. Всё бы хорошо, да вот учитывая приличную мощность усилителя НЧ, ток потребления центра в пиках басов достигал 8А. И даже попытка установить на питание 100 ваттный трансформатор с 4-х амперными вторичками нормального результата не дал: мало того, что на басах напряжение проваливалось на 3-4 вольта (что было хорошо заметно по затуханию ламп подсветки передней панели магнитолы), так ещё и от фона 50Гц никак не удавалось избавиться. Хоть 20000 микрофарад ставь, хоть экранируй всё, что можно.


А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.

Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.

Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? - Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.


Так как места в корпусе будущего музыкального центра не много - вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что...



А кулер? - Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь - два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов - почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.

Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!