Протоколы входящие в набор ipsec. IPsec VPN

    pre-shared key : Два даемона racoon подключаются друг к другу, подтверждают, что они именно те, за кого себя выдают (используя секретный ключ, заданный вами, по умолчанию в файле /etc/racoon/psk.txt). Затем даемоны генерируют новый секретный ключ и используют его для шифрования трафика через VPN. Они периодически изменяют этот ключ, так что даже если атакующий сломает один из ключей (что теоретически почти невозможно) это не даст ему слишком много – он сломал ключ, который два даемона уже сменили на другой. Предварительный ключ(pre-shared key) не используется для шифрования трафика через VPN соединение это просто маркер, позволяющий управляющим ключами даемонам доверять друг другу. Права на файл psk.txt должны быть 0600 (т.е. запись и чтение только для root).

    IPsec состоит из двух протоколов:

    Encapsulated Security Payload (ESP), защищающей данные IP пакета от вмешательства третьей стороны путем шифрования содержимого с помощью симметричных криптографических алгоритмов (таких как Blowfish,3DES, AES).

    Authentication Header (AH), защищающий заголовок IP пакета от вмешательства третьей стороны и подделки путем вычисления криптографической контрольной суммы и хеширования полей заголовка IP пакета защищенной функцией хеширования. К пакету добавляется дополнительный заголовок с хэшем, позволяющий аутентификацию информации пакета.

ESP и AH могут быть использованы вместе или по отдельности, в зависимости от обстоятельств.

esp и ah - пакеты ipsec, формируются ядром после того как хосты, при помощи racoon, договорятся о ключе по протоколу isakmp (500/udp).

Режимы работы IPsec(транспортный, туннельный)

Существует два режима работы IPsec: транспортный режим и туннельный режим(когда в транспортном режиме работают только маршрутизаторы).

IPsec может быть использован или для непосредственного шифрования трафика между двумя хостами (транспортный режим); или для построения "виртуальных туннелей" между двумя подсетями, которые могут быть использованы для защиты соединений между двумя корпоративными сетями (туннельный режим). Туннельный режим обычно называют виртуальной частной сетью (Virtual Private Network, Что это такое VPN).

В транспортном режиме шифруется (или подписывается) только информативная часть IP-пакета. Маршрутизация не затрагивается, так как заголовок IP пакета не изменяется (не шифруется). Транспортный режим как правило используется для установления соединения между хостами. Он может также использоваться между шлюзами, для защиты туннелей, организованных каким-нибудь другим способом (IP tunnel, GRE туннели и др.).

В туннельном режиме IP-пакет шифруется целиком. Для того, чтобы его можно было передать по сети, он помещается в другой IP-пакет. По существу, это защищённый IP-туннель. Туннельный режим может использоваться для подключения удалённых компьютеров к виртуальной частной сети или для организации безопасной передачи данных через открытые каналы связи (например, Интернет) между шлюзами для объединения разных частей виртуальной частной сети. В туннельном режиме инкапсулируется весь исходный IP пакет, и добавляется новый IP заголовок.

Если используется IPsec совместно с GRE туннели , который инкапсулирует исходный пакет и добавляет новый IP заголовок, логично использовать транспортный режим.

Режимы IPsec не являются взаимоисключающими. На одном и том же узле некоторые SA могут использовать транспортный режим, а другие - туннельный.

Security Associations (SA) . Для возможности проводить инкапсуляцию/декапсуляцию стороны участвующие в процессе обмена должны иметь возможность хранить секретные ключи, алгоритмы и IP адреса. Вся эта информация хранится в Ассоциациях Безопасности (SA), SA в свою очередь хранятся в Базе данных Ассоциаций Безопасности (SAD). Конфигурирование Security Association , позволяет задать например mode transport | tunnel | ro | in_trigger | beet - режим безопасной ассоциации. Соответственно, может принимать одно из значений, означающих транспортный, тоннельный, beet (Bound End-to-End Tunnel), оптимизации маршрута (route optimization) или in_trigger режимы. (последние два используются в контексте mobile ipv6).

Security Policy (SP) - политика безопасности, хранится в SPD (База данных политик безопасности). SA специфицирует, как IPsec предполагает защищать трафик, SPD в свою очередь хранит дополнительную информацию, необходимую для определения какой именно трафик защищать и когда. SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA. SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения.

IPSec (сеть-сеть) между серверами FreeBSD

    Шаг 1 : Создание и тестирование "виртуального" сетевого подключения.

    • Настройте оба ядра с device gif . В версии FreeBSD поддержка gif включена в ядро.

      Отредактируйте /etc/rc.conf на маршрутизаторах и добавьте следующие строки (подставляя IP адреса где необходимо). A.B.C.D - реальный IP первого маршрутизатора, W.X.Y.Z - реальный IP второго маршрутизатора. # IPsec №1 gateway > ee /etc/rc.conf ... # IPsec to S through ISP_V gif_interfaces="gif0" # gifconfig_gif0="local-ip(A.B.C.D) remote-ip (W.X.Y.Z)" gifconfig_gif0="194.x.x.x 91.x.x.x" ifconfig_gif0="inet 10.26.95.254 192.168.1.254 netmask 255.255.255.255" static_routes="vpn vpn1" route_vpn="-net 192.168.1.0/24 192.168.1.254" route_vpn1="-net 192.168.35.0/24 192.168.1.254" # IPsec №2 gateway > ee /etc/rc.conf ... # IPsec na G through ISPGate gif_interfaces="gif0" # gifconfig_gif0="W.X.Y.Z A.B.C.D" gifconfig_gif0="91.x.x.x 194.x.x.x" ifconfig_gif0="inet 192.168.1.254 10.26.95.254 netmask 255.255.255.255" static_routes="vpn" route_vpn="-net 10.26.95.0/24 10.26.95.254"

      Отредактируйте скрипт брандмауэра на обеих маршрутизаторах и добавьте # IPFW ipfw add 1 allow ip from any to any via gif0 # PF set skip on gif0

Теперь ping должны ходить между сетями.

    Защита соединения с помощью IPsec

    Шаг 2 : Защита соединения с помощью IPsec

    • Настройте оба ядра: > sysctl -a | grep ipsec

      если команда ничего не вывела, значит нужно пересобрать ядра на обоих маршрутизаторах с параметрами

      # IPSEC for FreeBSD 7.0 and above options IPSEC options IPSEC_FILTERTUNNEL device crypto # IPSEC for FreeBSD 6.3 options IPSEC # IP security options IPSEC_ESP # IP security (crypto; define w/ IPSEC) options IPSEC_DEBUG # Необязательно. debug for IP security

      Устанавливаем порт ipsec-tools. > cd /usr/ports/security/ipsec-tools > make config > make install clean > ee /etc/rc.conf racoon_enable="YES" ipsec_enable="YES" > mkdir -p /usr/local/etc/racoon/cert > cp /usr/local/share/examples/ipsec-tools/racoon.conf /usr/local/etc/racoon/racoon.conf > cd /usr/local/etc/racoon/cert/

      Создаем SSL сертификаты на каждом хосте. Копируем с одной на другую файлики *.public. В принципе, имена ключей неважны, можно называть и по IP, с соответствующими расширениями.

      > openssl req -new -nodes -newkey rsa:1024 -sha1 -keyform PEM -keyout your.key1.private -outform PEM -out your.key1.pem > openssl x509 -req -in your.key1.pem -signkey your.key.private -out your.key1.public

    Создаем файл ipsec.conf. Настройка на шлюзе #1 (где есть публичный IP адрес A.B.C.D) для включения шифрования всего предназначенного W.X.Y.Z трафика. A.B.C.D/32 и W.X.Y.Z/32 это IP адреса и сетевые маски, определяющие сети или хосты, к которым будет применяться данная политика. В данном случае мы хотим применить их к трафику между этими двумя хостами. Параметр ipencap сообщает ядру, что эта политика должна применяться только к пакетам, инкапсулирующим другие пакеты. Параметр -P out сообщает, что эта политика применяется к исходящим пакетам, и ipsec – то, что пакеты будут зашифрованы.

Оставшаяся часть строки определяет, как эти пакеты будут зашифрованы. Будет использоваться протокол esp, а параметр tunnel показывает, что пакет в дальнейшем будет инкапсулирован в IPsec пакет. Повторное использование A.B.C.D и W.X.Y.Z предназначено для выбора используемых параметров безопасности, и наконец параметр require разрешает шифрование пакетов, попадающих под это правило.

Это правило соответствует только исходящим пакетам. Вам потребуется похожее правило, соответствующее входящим пакетам.

> ee /etc/ipsec.conf spdadd A.B.C.D/32 W.X.Y.Z/32 ipencap -P out ipsec esp/tunnel/A.B.C.D-W.X.Y.Z/require; spdadd W.X.Y.Z/32 A.B.C.D/32 ipencap -P in ipsec esp/tunnel/W.X.Y.Z-A.B.C.D/require;

Настройка на шлюзе #2 аналогична только меняются IP местами.

Настройка утилиты racoon

> ee /usr/local/etc/racoon/racoon.conf path include "/usr/local/etc/racoon"; path certificate "/usr/local/etc/racoon/cert/"; # following line activates logging & should deactivated later log debug; # если директива listen не задана, racoon слушает все доступные # адреса интерфейсов. listen { #isakmp::1 ; isakmp 202.249.11.124 ; #admin ; # administrative port for racoonctl. #strict_address; # requires that all addresses must be bound. } # описываем удалённый хост (на второй машине - идентично, # тока другой IP и ключи) remote 217.15.62.200 { exchange_mode aggressive,main; my_identifier asn1dn; peers_identifier asn1dn; # сертификаты этой машины certificate_type x509 "via.epia.public" "via.epia.private"; # сертификат удлённой машины peers_certfile x509 "test.su.public"; proposal { encryption_algorithm 3des; hash_algorithm sha1; authentication_method rsasig; dh_group 2 ; } } sainfo anonymous { pfs_group 2; encryption_algorithm 3des; authentication_algorithm hmac_sha1; compression_algorithm deflate; }

    Настройка пакетного фильтра PF, где esp_peers шлюз с которым создается шифрованный туннель. Разрешаем прохождение пакетов ESP и IPENCAP в обе стороны.

#pass IPSec pass in on $ext_if_a inet proto udp from { $esp_peers } to ($ext_if_a) port isakmp pass in on $ext_if_a inet proto esp from { $esp_peers } to ($ext_if_a) # pass out on $ext_if_a inet proto udp from { $esp_peers } to ($ext_if_a) port isakmp pass out on $ext_if_a inet proto esp from { $esp_peers } to ($ext_if_a)

Cмотрим логи /var/log/security и /var/log/messages.

Как только параметры безопасности установлены, вы можете просмотреть их используя setkey(8). Запустите

> /etc/rc.d/ipsec start > /usr/local/etc/rc.d/racoon start > setkey -D # список созданных защищенных каналов > setkey -DP # покажет список политик безопасности

на любом из хостов для просмотра информации о параметрах безопасности.

    Проверка работоспособности:

    ping между сетями должен работать

    Запускаем для прослушки физического интерфейса на котором построен туннель (а не виртуального gif0). В другом окне например ping -ем удаленную серую сеть (например, ping 192.168.1.11) tcpdump -i em0 -n host 91 .x.x.81 ... 16 :15 :54.419117 IP x.x.x.x >

tcpdump Linux примеры использования должен показывать ESP пакеты.

IPSec (сеть-сеть) между серверами Linux

# aptitude install ipsec-tools racoon

    Алгоритм настройки IPsec

    Настройка пакета racoon

    Создание политики безопасности

    Виртуальные интерфейсы. Они нужны для маршрутизации сетей находящихся в локальных сетях. Два соединенных сервера будут видеть себя без интерфейсов(иногда без них не заводится и между серверами, странно вообще-то).

Ниже приведены конфиги для случая с предопределёнными ключами.

> nano /etc/racoon/racoon.conf path include "/etc/racoon"; path pre_shared_key "/etc/racoon/psk.txt"; #path certificate "/etc/racoon/certs"; remote 10.5.21.23 { exchange_mode aggressive,main; doi ipsec_doi; situation identity_only; my_identifier address; #Определяет метод идентификации, который будет использоваться при проверке подлинности узлов. lifetime time 2 min; initial_contact on; proposal { encryption_algorithm 3des; hash_algorithm sha1; authentication_method pre_shared_key; # Определяет метод проверки подлинности, используемый при согласовании узлов. dh_group 2; } proposal_check strict; } sainfo anonymous # Отмечает, что SA может автоматически инициализировать соединение с любым партнёром при совпадении учётных сведений IPsec. { pfs_group 2; lifetime time 2 min ; encryption_algorithm 3des, blowfish 448, des, rijndael ; authentication_algorithm hmac_sha1, hmac_md5 ; compression_algorithm deflate ; }

Создадим политику безопасности

> nano pol.cfg #!/sbin/setkey -f flush; spdflush; spdadd 10.5.21.24 10.5.21.23 any -P out ipsec esp/transport//require; spdadd 10.5.21.23 10.5.21.24 any -P in ipsec esp/transport//require; > chmod +x pol.cfg > ./pol.cfg

Создадим выполняемый файл для создания интерфейсов и запустим его.

>nano tun.sh #!/bin/sh ip tunnel del tun0 ip tunnel add tun0 mode ipip remote 10.5.21.23 local 10.5.21.24 dev eth0 # создаем интерфейс tun0 и устанавливаем туннель # между хостами (здесь нужно использовать реальные IP адреса сетевых интерфейсов). ifconfig tun0 10.0.9.1 pointopoint 10.0.9.2 # назначаем интерфейсу IP адреса, для текущего хоста и для другого конца # туннеля (не обязательно). ifconfig tun0 mtu 1472 ifconfig tun0 up # ниже можно прописать нужные нам маршруты, например так route add -net ... netmask 255.255.255.0 gw ... route add -net ... netmask 255.255.255.0 gw ... > ./tun.sh

Для автоматической загрузки правил файл tun.sh правильно поместить для Debian в директорию /etc/network/if-up.d

Все IPSec тунель между сетями настроен.

iptables IPSec

$IPT -A INPUT -p udp -m udp -s xxx.xxx.xxx.xxx -d xxx.xxx.xxx.xx --dport 500 -j ACCEPT $IPT -A INPUT -p esp -j ACCEPT $IPT -A INPUT -p ah -j ACCEPT $IPT -A INPUT -p ipencap -j ACCEPT $IPT -A INPUT -p udp -m udp -s xxx.xxx.xxx.xxx -d xxx.xxx.xxx.xx --dport 4500 -j ACCEPT

IPsec «узел-узел» без виртуальных интерфесов

Задача . При помощи IPSec (pre_shared_key) соединить два сервера (Debian 5 и Debian 7). У обоих реальные IP. Никаких сетей пробрасывать не надо. Должен шифроваться трафик между этими IP. То есть строим транспортный режим (между двумя хостами).

Настройка сводится к двум пунктам

    Настройка пакета racoon

    Создание политики безопасности: нужно указать режим transport и any spdadd x.x.x.x/32 y.y.y.y/32 any -P out ipsec esp/transport//require; spdadd y.y.y.y/32 x.x.x.x/32 any -P in ipsec esp/transport//require;

IPSec (GRE) (узел-сеть) между Debian и Cisco

Задача: построить IPsec в туннельном режиме. Описание RFC протокола SIP сигнализация между поставщиком (Cisco) и клиентом (Debian 5) шифруется IPsec, а RTP минуя туннель идет кратчайшим маршрутом через обычный Интернет.

    Клиент tunnel-endpoint is: 193.xxx.xxx.xxx

    Сервер tunnel-endpoint is: 62.xxx.xxx.xxx

    Клиент Sip Server is: 193.xxx.xxx.xxx

    Сервер SIP Servers are: 62.xxx.237.xxx/26 and 62.xxx.246.xxx/26

да и перед настрокой туннеля (перед auto tun0) прописать pre-up modprobe ip_gre

# modprobe ip_gre

Скрипт для создания GRE туннели туннеля в Debian:

#!/bin/sh -e modprobe ip_gre #ip tunnel del tun0 ip tunnel add tun0 mode gre remote 62.xxx.xxx.xxx local 193.xxx.xxx.xxx dev eth0 ifconfig tun0 mtu 1472 ifconfig tun0 up route add -net 62.xxx.237.xxx netmask 255.255.255.192 dev tun0 route add -net 62.xxx.246.xxx netmask 255.255.255.192 dev tun0

Утилиты

    Для управления можно использовать утилиту racoonctl racoonctl show-sa esp

    Cписок созданных защищенных каналов > setkey -D

    список политик безопасности > setkey -DP

Мониторинг IPsec

Мониторинг IPsec в Debian 5.0 2.6.26-2-686-bigmem i686. В уровень детализации логов log notify или log debug устанавливается в файле racoon.conf.

# tail -F /var/log/syslog | grep racoon

IPSec Openswan

OpenSWAN начал разрабатываться как форк прекратившего в настоящее своё существование проекта FreeS/WAN (Free Secure Wide-Area Networking), релизы продолжают выпускаться под свободной GNU General Public License. В отличие от проекта FreeS/WAN, OpenSWAN разрабатывается не только специально под операционную систему GNU/Linux. OpenSWAN обеспечивает стек протоколов IpSec: AH и ESP для ядра Linux,а также инструментарий для управления ими.

OpenSWAN для ветки ядра 2.6 предоставляет встроенную, NETKEY реализацию IpSec, так и собственную KLIPS.

CentOS 6.6 поддерживает только Openswan в основных пакетах.

Задача . Создать шифрованный туннель между CentOS 6.6 и Debian 7.8 Wheezy. GRE туннели + Openswan (type=transport)

    Openswan будет шифровать наш трафик в транспортном режиме(host-to-host), не вмешиваясь в маршрутизацию. Установим пакеты на обоих серверах yum install openswan aptitude install openswan

    На обоих концах туннеля настраиваем Правила iptables . Открыть 500 порт, по которому идет обмен сертификатам и ключами. iptables -A INPUT -p udp --dport 500 -j ACCEPT iptables -A INPUT -p tcp --dport 4500 -j ACCEPT iptables -A INPUT -p udp --dport 4500 -j ACCEPT # Более строго выпишем правила для IPSec IPT ="/sbin/iptables" $IPT -A INPUT -p udp -s x.x.x.x -d x.x.x.x --dport 500 -m comment --comment "IpSec" -j ACCEPT $IPT -A INPUT -p tcp -s x.x.x.x -d x.x.x.x --dport 4500 -m comment --comment "IpSec" -j ACCEPT $IPT -A INPUT -p udp -s x.x.x.x -d x.x.x.x --dport 4500 -m comment --comment "IpSec" -j ACCEPT

    Подготовка конфигурационных файлов. Используемые файлы и директории / etc/ ipsec.d/ / etc/ ipsec.conf

    Проверка системы на правильность окружения для IPsec ipsec verify

    Добавить в конец файла sysctl.conf

    # IPSec Verify Compliant # Разрешить пересылку пакетов между интерфейсами для IPv4 net.ipv4.ip_forward = 1 # отключаем icmp redirect net.ipv4.conf.all.send_redirects = 0 net.ipv4.conf.all.accept_redirects = 0 net.ipv4.conf.default.send_redirects = 0 net.ipv4.conf.default.accept_redirects = 0

    Применим параметры ядра без перезагрузки

    Первым конфигурационным файлом является /etc/ipsec.conf. Задаем явно в разделе config setup config setup protostack =netkey plutoopts ="--perpeerlog" dumpdir =/ var/ run/ pluto/ nat_traversal =yes virtual_private =% v4:10.0.0.0/ 8 ,% v4:192.168.0.0/ 16 , % v4:172.16.0.0/ 12 ,% v4:25.0.0.0/ 8 ,% v6:fd00::/ 8 ,% v6:fe80::/ 10 oe =off #plutostderrlog=/dev/null

    В первую очередь вам необходимо сформировать ключи, используемые шлюзами для аутентификации. В Debian это ключ можно создать при инсталляции. Запускаем на обеих системах ipsec newhostkey, генерируя нужные нам ключи. ipsec newhostkey --output / etc/ ipsec.secrets ipsec showhostkey --left ipsec showhostkey --right

    Независимо от того, как вы сконфигурируете сервер, всегда рассматривайте вашу подсеть как расположенную «слева» (left), а подсеть, к которой доступ осуществляется дистанционно, сайт, как расположенный «справа» (right). Следующая конфигурация выполняется на сервере VPN на стороне Left. На другом сервере должен быть точно такие настройки для этого соединения. conn gagahost-to-miraxhost auto =start left =188 .x.x.x leftrsasigkey =0sN4vI6ooUyMyL ... right =91 .x.x.x rightrsasigkey =0sfAhuo4SQ0Qt ... type =transport scp / etc/ ipsec.conf admin@ 192.168.35.254:/ home/ admin/

Диагностика IPSec Openswan

Запуск сервиса и поиск возникающих проблем.

Openwan logs (pluto) : /var/log/auth.log /var/log/syslog /var/log/pluto/peer/a/b/c/d/a.b.c.d.log

Если на обоих серверах нет ошибок, то туннель должен сейчас подняться. Вы можете проверить туннель с помощью команды ping с следующим образом. Если туннель не поднят, то частная подсеть на стороне B не должна быть доступна со стороны А, т. е. команда ping не должна работать. После того, как туннель будет поднят, попробуйте команду ping для доступа к частной подсети на стороне B со стороны A. Это должно работать.

Кроме того, в таблице маршрутизации сервера должны появиться маршруты к частной подсети.

# ip route via dev eth0 src default via dev eth0

    Команды проверки состояний соединений: ipsec verify service ipsec status ip xfrm state list - управления SAD, возможности шире, чем у setkey ipsec addconn --checkconfig - проверка конфигурации ipsec auto --status - подробное состояние ip xfrm monitor

    Политики ipsec, согласно которым принимается решение какой трафик направлять в туннель ip xfrm pol show

    tcpdump Linux примеры использования запускаем для прослушки физического интерфейса на котором построен туннель (а не виртуального GRE). В другом окне например ping -ем удаленную серую сеть (например, ping 192.168.1.11). tcpdump должен показывать ESP пакеты. tcpdump -i em0 -n host 91 .x.x.81 ... 16 :15 :54.419117 IP x.x.x.x > 91 .x.x.81: ESP(spi =0x01540fdd,seq =0xa20) , length 92 ...

Ссылки

0 В этой статье предлагается обзор средств IPSEC (IP Security - система защиты на уровне IP) и соответствующих протоколов IPSec, доступных в продуктах Cisco и используемых для создания виртуальных частных сетей (VPN). В данной статье мы определим, что такое IPSEC, а также какие протоколы и алгоритмы защиты лежат в основе IPSEC.

Введение

IP Security - это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Продукты Cisco для поддержки VPN используют набор протоколов IPSec, являющийся на сегодня промышленным стандартом обеспечения широких возможностей VPN. IPSec предлагает механизм защищенной передачи данных в IP-сетях, обеспечивая конфиденци¬альность, целостность и достоверность данных, передаваемых через незащищенные сети типа Internet. IPSec обеспечивает следующие возможности VPN в сетях Cisco:

  • Конфиденциальность данных . Отправитель данных IPSec имеет возможность шифровать пакеты перед тем, как передавать их по сети.
  • Целостность данных . Получатель данных IPSec имеет возможность аутентифицировать сообщающиеся с ним стороны (устройства или программное обеспе¬чение, в которых начинаются и заканчиваются туннели IPSec) и пакеты IPSec, посылаемые этими сторонами, чтобы быть уверенным в том, что данные не были изменены в пути.
  • Аутентификация источника данных . Получатель данных IPSec имеет возмож¬ность аутентифицировать источник получаемых пакетов IPSec. Этот сервис за¬висит от сервиса целостности данных.
  • Защита от воспроизведения . Получатель данных IPSec может обнаруживать и от¬вергать воспроизведенные пакеты, не допуская их фальсификации и проведе¬ния атак внедрения посредника.

IPSec представляет собой основанный на стандартах набор протоколов и алгоритмов защиты. Технология IPSec и связанные с ней протоколы защиты соответствуют открытым стандартам, которые поддерживаются группой IETF (Internet Engineering Task Force - проблемная группа проектирования Internet) и описаны в спецификациях RFC и проектах IETF. IPSec действует на сетевом уровне, обеспечивая защиту и аутентификацию пакетов IP, пересылаемых между устройствами (сторонами) IPSec - такими как маршрутизаторы Cisco, брандмауэры PIX Firewall, клиенты и концентраторы Cisco VPN, а также многие другие продукты, поддерживающие IPSec. Средства поддержки IPSec допускают масштабирование от самых малых до очень больших сетей.

Ассоциации защиты (Security Association ,SA)

IPSec предлагает стандартный способ аутентификации и шифрования соединений между сообщающимися сторонами. Чтобы обеспечить защиту связей, средства IPSec используют стандартные алгоритмы (т.е. математические формулы) шифрования и аутентификации, называемые преобразованиями. В IPSec используются открытые стандарты согласования ключей шифрования и управления соединениями, что обеспечивает возможность взаимодействия между сторонами. Технология IPSec предлагает методы, позволяющие сторонам IPSec "договориться" о согласованном использовании сервисов. Чтобы указать согласуемые параметры, в IPSec используются ассоциации защиты.

Ассоциация защиты (Security Association - SA) представляет собой согласованную политику или способ обработки данных, обмен которыми предполагается между двумя устройствами сообщающихся сторон. Одной из составляющих такой политики может быть алгоритм, используемый для шифрования данных. Обе стороны могут ис¬пользовать один и тот же алгоритм как для шифрования, так и для дешифрования. Действующие параметры SA сохраняются в базе данных ассоциаций защиты (Security Association Database - SAD) обеих сторон.

Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

Протокол IKE (Internet Key Exchange - обмен Internet-ключами) является гибридным протоколом, обеспечивающим специальный сервис для IPSec, а именно аутентификацию сторон IPSec, согласование параметров ассоциаций защиты IKE и IPSec, а также выбор ключей для алгоритмов шифрования, используемых в рамках IPSec. Протокол IKE опира¬ется на протоколы ISAKMP (Internet Security Association and Key Management Protocol - протокол управления ассоциациями и ключами защиты в сети Internet) и Oakley, которые применяются для управления процессом создания и обработки ключей шифрования, используемых в преобразованиях IPSec. Протокол IKE применяется также для формирования ассоциаций защиты между потенциальными сторонами IPSec.
Как IKE, так и IPSec используют ассоциации зашиты, чтобы указать параметры связи.
IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

Хэш-функция – это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m1 и m2, таких, что

H(m1)=H(m2), где H – хэш функция.

Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC - механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования - как L (L
ipad = байт 0x36, повторённый B раз;
opad = байт 0x5C, повторённый B раз.

Для вычисления HMAC от данных "text" необходимо выполнить следующую операцию:

H(K XOR opad, H(K XOR ipad, text))

Из описания следует, что IKE использует для аутентификации сторон HASH величины. Отметим, что под HASH в данном случае подразумевается исключительно название Payload в ISAKMP, и это название не имеет ничего общего со своим содержимым

Инфраструктура IPSec

Сети VPN на основе IPSec могут быть построены с помощью самых разных устройств Cisco - маршрутизаторов Cisco, брандмауэров CiscoSecure PIX Firewall, программного обеспечения клиента CiscoSecure VPN и концентраторов Cisco VPN серий 3000 и 5000. Маршрутизаторы Cisco имеют встроенную поддержку VPN с соответствующими богатыми возможностями программного обеспечения Cisco IOS, что уменьшает сложность сетевых решений и снижает общую стоимость VPN при возможности построения многоуровневой защиты предоставляемых сервисов. Брандмауэр PIX Firewall является высокопроизводительным сетевым устройством, которое может обслуживать конечные точки туннелей, обеспечивая им высокую пропускную способность и прекрасные функциональные возможности брандмауэра. Программное обеспечение клиента CiscoSecure VPN поддерживает самые строгие требования VPN удаленного доступа для операций электронной коммерции, а также приложений мо¬бильного доступа, предлагая законченную реализацию стандартов IPSec и обеспечивая надежное взаимодействие маршрутизаторов Cisco и брандмауэров PIX Firewall.

Как работает IPSec


IPSec опирается на ряд технологических решений и методов шифрования, но действие IPSec в общем можно представить в виде следующих главных шагов:
  • Шаг 1. Начало процесса IPSec. Трафик, которому требуется шифрование в соответствии с политикой защиты IPSec, согласованной сторонами IPSec, начинает IКЕ-процесс.
  • Шаг 2. Первая фаза IKE . IKE-процесс выполняет аутентификацию сторон IPSec и ведет переговоры о параметрах ассоциаций защиты IKE, в результате чего создается защищенный канал для ведения переговоров о параметрах ассоциаций защиты IPSec в ходе второй фазы IKE.
  • Шаг 3. Вторая фаза IKE . IKE-процесс ведет переговоры о параметрах ассоциации защиты IPSec и устанавливает соответствующие ассоциации защиты IPSec для устройств сообщающихся сторон.
  • Шаг 4. Передача данных . Происходит обмен данными между сообщающимися сторонами IPSec, который основывается на параметрах IPSec и ключах, хранимых в базе данных ассоциаций защиты.
  • Шаг 5. Завершение работы туннеля IPSec . Ассоциации защиты IPSec завершают свою работу либо в результате их удаления, либо по причине превышения предельного времени их существования.
В следующих разделах указанные шаги будут описаны подробнее.

В конце шестидесятых годов американское агентство перспективных исследований в обороне DARPA приняло решение о создании экспериментальной сети под названием ARPANet. В семидесятых годах ARPANet стала считаться действующей сетью США, и через эту сеть можно было получить доступ к ведущим университетским и научным центрам США. В начале восьмидесятых годов началась стандартизация языков программирования, а затем и протоколов взаимодействия сетей. Результатом этой работы стала разработка семиуровневой модели сетевого взаимодействия ISO/OSI и семейства протоколов TCP/IP, которое стало основой для построения как локальных, так и глобальных сетей.

Базовые механизмы информационного обмена в сетях TCP/IP были в целом сформированы в начале восьмидесятых годов, и были направлены прежде всего на обеспечение доставки пакетов данных между различными операционными системами с использованием разнородных каналов связи. Несмотря на то, что идея создания сети ARPANet (впоследствии превратившейся в современный Интернет) принадлежала правительственной оборонной организации, фактически сеть зародилась в исследовательском мире, и наследовала традиции открытости академического сообщества. Ещё до коммерциализации Интернета (которая произошла в середине девяностых годов) многие авторитетные исследователи отмечали проблемы, связанные с безопасностью стека протоколов TCP/IP. Основные концепции протоколов TCP/IP не полностью удовлетворяют (а в ряде случаев и противоречат) современным представлениям о компьютерной безопасности.

До недавнего времени сеть Интернет использовалась в основном для обработки информации по относительно простым протоколам: электронная почта, передача файлов, удалённый доступ. Сегодня, благодаря широкому распространению технологий WWW, всё активнее применяются средства распределённой обработки мультимедийной информации. Одновременно с этим растёт объём данных, обрабатываемых в средах клиент/сервер и предназначенных для одновременного коллективного доступа большого числа абонентов. Разработано несколько протоколов прикладного уровня, обеспечивающих информационную безопасность таких приложений, как электронная почта (PEM, PGP и т.п.), WWW (Secure HTTP, SSL и т.п.), сетевое управление (SNMPv2 и т.п.). Однако наличие средств обеспечения безопасности в базовых протоколах семейства TCP/IP позволит осуществлять информационный обмен между широким спектром различных приложений и сервисных служб.

Краткая историческая справка появления протокола

В 1994 году Совет по архитектуре Интернет (IAB) выпустил отчет "Безопасность архитектуры Интернет". В этом документе описывались основные области применения дополнительных средств безопасности в сети Интернет, а именно защита от несанкционированного мониторинга, подмены пакетов и управления потоками данных. В числе первоочередных и наиболее важных защитных мер указывалась необходимость разработки концепции и основных механизмов обеспечения целостности и конфиденциальности потоков данных. Поскольку изменение базовых протоколов семейства TCP/IP вызвало бы полную перестройку сети Интернет, была поставлена задача обеспечения безопасности информационного обмена в открытых телекоммуникационных сетях на базе существующих протоколов. Таким образом, начала создаваться спецификация Secure IP, дополнительная по отношению к протоколам IPv4 и IPv6.

Архитектура IPSec

IP Security — это комплект протоколов, касающихся вопросов шифрования, аутентификации и обеспечения защиты при транспортировке IP-пакетов; в его состав сейчас входят почти 20 предложений по стандартам и 18 RFC.

Спецификация IP Security (известная сегодня как IPsec) разрабатывается Рабочей группой IP Security Protocol IETF . Первоначально IPsec включал в себя 3 алгоритмо-независимые базовые спецификации, опубликованные в качестве RFC-документов "Архитектура безопасности IP", "Аутентифицирующий заголовок (AH)", "Инкапсуляция зашифрованных данных (ESP)" (RFC1825, 1826 и 1827). Необходимо заметить, что в ноябре 1998 года Рабочая группа IP Security Protocol предложила новые версии этих спецификаций, имеющие в настоящее время статус предварительных стандартов, это RFC2401 — RFC2412. Отметим, что RFC1825-27 на протяжении уже нескольких лет считаются устаревшими и реально не используются. Кроме этого, существуют несколько алгоритмо-зависимых спецификаций, использующих протоколы MD5, SHA, DES.

Рис. 1 – Архитектура IPSec.

Рабочая группа IP Security Protocol разрабатывает также и протоколы управления ключевой информацией. В задачу этой группы входит разработка Internet Key Management Protocol (IKMP), протокола управления ключами прикладного уровня, не зависящего от используемых протоколов обеспечения безопасности. В настоящее время рассматриваются концепции управления ключами с использованием спецификации Internet Security Association and Key Management Protocol (ISAKMP) и протокола Oakley Key Determination Protocol. Спецификация ISAKMP описывает механизмы согласования атрибутов используемых протоколов, в то время как протокол Oakley позволяет устанавливать сессионные ключи на компьютеры сети Интернет. Ранее рассматривались также возможности использования механизмов управления ключами протокола SKIP, однако сейчас такие возможности реально практически нигде не используются. Создаваемые стандарты управления ключевой информацией, возможно, будут поддерживать Центры распределения ключей, аналогичные используемым в системе Kerberos . Протоколами ключевого управления для IPSec на основе Kerberos сейчас занимается относительно новая рабочая группа KINK (Kerberized Internet Negotiation of Keys).

Гарантии целостности и конфиденциальности данных в спецификации IPsec обеспечиваются за счет использования механизмов аутентификации и шифрования соответственно. Последние, в свою очередь, основаны на предварительном согласовании сторонами информационного обмена т.н. "контекста безопасности" – применяемых криптографических алгоритмов, алгоритмов управления ключевой информацией и их параметров. Спецификация IPsec предусматривает возможность поддержки сторонами информационного обмена различных протоколов и параметров аутентификации и шифрования пакетов данных, а также различных схем распределения ключей. При этом результатом согласования контекста безопасности является установление индекса параметров безопасности (SPI), представляющего собой указатель на определенный элемент внутренней структуры стороны информационного обмена, описывающей возможные наборы параметров безопасности.

По сути, IPSec, который станет составной частью IPv6, работает на третьем уровне, т. е. на сетевом уровне. В результате передаваемые IP-пакеты будут защищены прозрачным для сетевых приложений и инфраструктуры образом. В отличие от SSL (Secure Socket Layer), который работает на четвертом (т. е. транспортном) уровне и теснее связан с более высокими уровнями модели OSI, IPSec призван обеспечить низкоуровневую защиту.


Рис. 2 — Модель OSI/ISO.

К IP-данным, готовым к передаче по виртуальной частной сети, IPSec добавляет заголовок для идентификации защищенных пакетов. Перед передачей по Internet эти пакеты инкапсулируются в другие IP-пакеты. IPSec поддерживает несколько типов шифрования, в том числе Data Encryption Standard (DES) и Message Digest 5 (MD5).

Чтобы установить защищенное соединение, оба участника сеанса должны иметь возможность быстро согласовать параметры защиты, такие как алгоритмы аутентификации и ключи. IPSec поддерживает два типа схем управления ключами, с помощью которых участники могут согласовать параметры сеанса. Эта двойная поддержка в свое время вызвала определенные трения в IETF Working Group.

С текущей версией IP, IPv4, могут быть использованы или Internet Secure Association Key Management Protocol (ISAKMP), или Simple Key Management for Internet Protocol. С новой версией IP, IPv6, придется использовать ISAKMP, известный сейчас как IKE, хотя не исключается возможность использования SKIP. Однако, следует иметь в виду, что SKIP уже давно не рассматривается как кандидат управления ключами, и был исключён из списка возможных кандидатов ещё в 1997 г.

Заголовок AH

Аутентифицирующий заголовок (AH) является обычным опциональным заголовком и, как правило, располагается между основным заголовком пакета IP и полем данных. Наличие AH никак не влияет на процесс передачи информации транспортного и более высокого уровней. Основным и единственным назначением AH является обеспечение защиты от атак, связанных с несанкционированным изменением содержимого пакета, и в том числе от подмены исходного адреса сетевого уровня. Протоколы более высокого уровня должны быть модифицированы в целях осуществления проверки аутентичности полученных данных.

Формат AH достаточно прост и состоит из 96-битового заголовка и данных переменной длины, состоящих из 32-битовых слов. Названия полей достаточно ясно отражают их содержимое: Next Header указывает на следующий заголовок, Payload Len представляет длину пакета, SPI является указателем на контекст безопасности и Sequence Number Field содержит последовательный номер пакета.


Рис. 3 — Формат заголовка AH.

Последовательный номер пакета был введен в AH в 1997 году в ходе процесса пересмотра спецификации IPsec. Значение этого поля формируется отправителем и служит для защиты от атак, связанных с повторным использованием данных процесса аутентификации. Поскольку сеть Интернет не гарантирует порядок доставки пакетов, получатель должен хранить информацию о максимальном последовательном номере пакета, прошедшего успешную аутентификацию, и о получении некоторого числа пакетов, содержащих предыдущие последовательные номера (обычно это число равно 64).

В отличие от алгоритмов вычисления контрольной суммы, применяемых в протоколах передачи информации по коммутируемым линиям связи или по каналам локальных сетей и ориентированных на исправление случайных ошибок среды передачи, механизмы обеспечения целостности данных в открытых телекоммуникационных сетях должны иметь средства защиты от внесения целенаправленных изменений. Одним из таких механизмов является специальное применение алгоритма MD5: в процессе формирования AH последовательно вычисляется хэш-функция от объединения самого пакета и некоторого предварительно согласованного ключа, а затем от объединения полученного результата и преобразованного ключа. Данный механизм применяется по умолчанию в целях обеспечения всех реализаций IPv6, по крайней мере, одним общим алгоритмом, не подверженным экспортным ограничениям.

Заголовок ESP

В случае использования инкапсуляции зашифрованных данных заголовок ESP является последним в ряду опциональных заголовков, "видимых" в пакете. Поскольку основной целью ESP является обеспечение конфиденциальности данных, разные виды информации могут требовать применения существенно различных алгоритмов шифрования. Следовательно, формат ESP может претерпевать значительные изменения в зависимости от используемых криптографических алгоритмов. Тем не менее, можно выделить следующие обязательные поля: SPI, указывающее на контекст безопасности и Sequence Number Field, содержащее последовательный номер пакета. Поле "ESP Authentication Data" (контрольная сумма), не является обязательным в заголовке ESP. Получатель пакета ESP расшифровывает ESP заголовок и использует параметры и данные применяемого алгоритма шифрования для декодирования информации транспортного уровня.


Рис. 4 — Формат заголовка ESP.

Различают два режима применения ESP и AH (а также их комбинации) — транспортный и туннельный.

Транспортный режим

Транспортный режим используется для шифрования поля данных IP пакета, содержащего протоколы транспортного уровня (TCP, UDP, ICMP), которое, в свою очередь, содержит информацию прикладных служб. Примером применения транспортного режима является передача электронной почты. Все промежуточные узлы на маршруте пакета от отправителя к получателю используют только открытую информацию сетевого уровня и, возможно, некоторые опциональные заголовки пакета (в IPv6). Недостатком транспортного режима является отсутствие механизмов скрытия конкретных отправителя и получателя пакета, а также возможность проведения анализа трафика. Результатом такого анализа может стать информация об объемах и направлениях передачи информации, области интересов абонентов, расположение руководителей.

Туннельный режим

Туннельный режим предполагает шифрование всего пакета, включая заголовок сетевого уровня. Туннельный режим применяется в случае необходимости скрытия информационного обмена организации с внешним миром. При этом, адресные поля заголовка сетевого уровня пакета, использующего туннельный режим, заполняются межсетевым экраном организации и не содержат информации о конкретном отправителе пакета. При передаче информации из внешнего мира в локальную сеть организации в качестве адреса назначения используется сетевой адрес межсетевого экрана. После расшифровки межсетевым экраном начального заголовка сетевого уровня пакет направляется получателю.

Security Associations

Security Association (SA) — это соединение, которое предоставляет службы обеспечения безопасности трафика, который передаётся через него. Два компьютера на каждой стороне SA хранят режим, протокол, алгоритмы и ключи, используемые в SA. Каждый SA используется только в одном направлении. Для двунаправленной связи требуется два SA. Каждый SA реализует один режим и протокол; таким образом, если для одного пакета необходимо использовать два протокола (как например AH и ESP), то требуется два SA.

Политика безопасности

Политика безопасности хранится в SPD (База данных политики безопасности). SPD может указать для пакета данных одно из трёх действий: отбросить пакет, не обрабатывать пакет с помощью IPSec, обработать пакет с помощью IPSec. В последнем случае SPD также указывает, какой SA необходимо использовать (если, конечно, подходящий SA уже был создан) или указывает, с какими параметрами должен быть создан новый SA.

SPD является очень гибким механизмом управления, который допускает очень хорошее управление обработкой каждого пакета. Пакеты классифицируются по большому числу полей, и SPD может проверять некоторые или все поля для того, чтобы определить соответствующее действие. Это может привести к тому, что весь трафик между двумя машинами будет передаваться при помощи одного SA, либо отдельные SA будут использоваться для каждого приложения, или даже для каждого TCP соединения.

ISAKMP/Oakley

Протокол ISAKMP определяет общую структуру протоколов, которые используются для установления SA и для выполнения других функций управления ключами. ISAKMP поддерживает несколько Областей Интерпретации (DOI), одной из которых является IPSec-DOI. ISAKMP не определяет законченный протокол, а предоставляет "строительные блоки" для различных DOI и протоколов обмена ключами.

Протокол Oakley — это протокол определения ключа, использующий алгоритм замены ключа Диффи-Хеллмана. Протокол Oakley поддерживает идеальную прямую безопасность (Perfect Forward Secrecy — PFS). Наличие PFS означает невозможность расшифровки всего траффика при компрометации любого ключа в системе.

IKE

IKE — протокол обмена ключами по умолчанию для ISAKMP, на данный момент являющийся единственным. IKE находится на вершине ISAKMP и выполняет, собственно, установление как ISAKMP SA, так и IPSec SA. IKE поддерживает набор различных примитивных функций для использования в протоколах. Среди них можно выделить хэш-функцию и псевдослучайную функцию (PRF).

Хэш-функция — это функция, устойчивая к коллизиям. Под устойчивостью к коллизиям понимается тот факт, что невозможно найти два разных сообщения m 1 и m 2 , таких, что H(m 1) =H(m 2) , где H — хэш функция.

Что касается псеводслучайных функций, то в настоящее время вместо специальных PRF используется хэш функция в конструкции HMAC (HMAC — механизм аутентификации сообщений с использованием хэш функций). Для определения HMAC нам понадобится криптографическая хэш функция (обозначим её как H) и секретный ключ K. Мы предполагаем, что H является хэш функцией, где данные хэшируются с помощью процедуры сжатия, последовательно применяемой к последовательности блоков данных. Мы обозначим за B длину таких блоков в байтах, а длину блоков, полученных в результате хэширования — как L (L

Ipad = байт 0x36, повторённый B раз;
opad = байт 0x5C, повторённый B раз.

Для вычисления HMAC от данных "text" необходимо выполнить следующую операцию:

H(K XOR opad, H(K XOR ipad, text))

Из описания следует, что IKE использует для аутентификации сторон HASH величины. Отметим, что под HASH в данном случае подразумевается исключительно название Payload в ISAKMP, и это название не имеет ничего общего со своим содержимым.

Атаки на AH, ESP и IKE.

Все виды атак на компоненты IPSec можно разделить на следующие группы: атаки, эксплуатирующие конечность ресурсов системы (типичный пример — атака "Отказ в обслуживании", Denial-of-service или DOS-атака), атаки, использующие особенности и ошибки конкретной реализации IPSec и, наконец, атаки, основанные на слабостях самих протоколов. AH и ESP. Чисто криптографические атаки можно не рассматривать — оба протокола определяют понятие "трансформ", куда скрывают всю криптографию. Если используемый криптоалгоритм стоек, а определенный с ним трансформ не вносит дополнительных слабостей (это не всегда так, поэтому правильнее рассматривать стойкость всей системы — Протокол-Трансформ-Алгоритм), то с этой стороны все нормально. Что остается? Replay Attack — нивелируется за счет использования Sequence Number (в одном единственном случае это не работает — при использовании ESP без аутентификации и без AH). Далее, порядок выполнения действий (сначала шифрация, потом аутентификация) гарантирует быструю отбраковку "плохих" пакетов (более того, согласно последним исследованиям в мире криптографии, именно такой порядок действий наиболее безопасен, обратный порядок в некоторых, правда очень частных случаях, может привести к потенциальным дырам в безопасности; к счастью, ни SSL, ни IKE, ни другие распространенные протоколы с порядком действий "сначала аутентифицировать, потом зашифровать", к этим частным случаям не относятся, и, стало быть, этих дыр не имеют). Остается Denial-Of-Service атака. Как известно, это атака, от которой не существует полной защиты. Тем не менее, быстрая отбраковка плохих пакетов и отсутствие какой-либо внешней реакции на них (согласно RFC) позволяют более-менее хорошо справляться с этой атакой. В принципе, большинству (если не всем) известным сетевым атакам (sniffing, spoofing, hijacking и т.п.) AH и ESP при правильном их применении успешно противостоят. С IKE несколько сложнее. Протокол очень сложный, тяжел для анализа. Кроме того, в силу опечаток (в формуле вычисления HASH_R) при его написании и не совсем удачных решений (тот же HASH_R и HASH_I) он содержит несколько потенциальных "дыр" (в частности, в первой фазе не все Payload в сообщении аутентифицируются), впрочем, они не очень серьезные и ведут, максимум, к отказу в установлении соединения.От атак типа replay, spoofing, sniffing, hijacking IKE более-менее успешно защищается. С криптографией несколько сложнее, — она не вынесена, как в AH и ESP, отдельно, а реализована в самом протоколе. Тем не менее, при использовании стойких алгоритмов и примитивов (PRF), проблем быть не должно. В какой-то степени можно рассматривать как слабость IPsec то, что в качестве единственного обязательного к реализации криптоалгоритма в нынешних спецификациях указывается DES (это справедливо и для ESP, и для IKE), 56 бит ключа которого уже не считаются достаточными. Тем не менее, это чисто формальная слабость — сами спецификации являются алгоритмо-независимыми, и практически все известные вендоры давно реализовали 3DES (а некоторые уже и AES).Таким образом, при правильной реализации, наиболее "опасной" атакой остается Denial-Of-Service.

Оценка протокола

Протокол IPSec получил неоднозначную оценку со стороны специалистов. С одной стороны, отмечается, что протокол IPSec является лучшим среди всех других протоколов защиты передаваемых по сети данных, разработанных ранее (включая разработанный Microsoft PPTP). По мнению другой стороны, присутствует чрезмерная сложность и избыточность протокола. Так, Niels Ferguson и Bruce Schneier в своей работе "A Cryptographic Evaluation of IPsec" отмечают, что они обнаружили серьёзные проблемы безопасности практически во всех главных компонентах IPsec. Эти авторы также отмечают, что набор протоколов требует серьёзной доработки для того, чтобы он обеспечивал хороший уровень безопасности. В работе приведено описание ряда атак, использующих как слабости общей схемы обработки данных, так и слабости криптографических алгоритмов.

Заключение

В этой статье мы рассмотрели некоторые основные моменты, касающиеся протокола сетевой безопасности IPsec. Не лишним будет отметить, что протокол IPsec доминирует в большинстве реализаций виртуальных частных сетей. В настоящее время на рынке представлены как программные реализации (например, протокол реализован в операционной системе Windows2000 компании Microsoft), так и программно-аппаратные реализации IPsec — это решения Cisco , Nokia . Несмотря на большое число различных решений, все они довольно хорошо совместимы друг с другом. В заключение статьи приводится таблица, в которой производится сравнение IPSec и широко распространённого сейчас SSL.

Особенности IPSec SSL
Аппаратная независимость Да Да
Код Не требуется изменений для приложений. Может потребовать доступ к исходному коду стека TCP/IP. Требуются изменения в приложениях. Могут потребоваться новые DLL или доступ к исходному коду приложений.
Защита IP пакет целиком. Включает защиту для протоколов высших уровней. Только уровень приложений.
Фильтрация пакетов Основана на аутентифицированных заголовках, адресах отправителя и получателя, и т.п. Простая и дешёвая. Подходит для роутеров. Основана на содержимом и семантике высокого уровня. Более интеллектуальная и более сложная.
Производительность Меньшее число переключений контекста и перемещения данных. Большее число переключений контекста и перемещения данных. Большие блоки данных могут ускорить криптографические операции и обеспечить лучшее сжатие.
Платформы Любые системы, включая роутеры В основном, конечные системы (клиенты/серверы), также firewalls.
Firewall/VPN Весь трафик защищён. Защищён только трафик уровня приложений. ICMP, RSVP, QoS и т.п. могут быть незащищены.
Прозрачность Для пользователей и приложений. Только для пользователей.
Текущий статус Появляющийся стандарт. Широко используется WWW браузерами, также используется некоторыми другими продуктами.

Ссылки

  • www.ietf.org/html.charters/ipsec-charter.html — Домашняя страничка рабочей группы IETF. Там же находятся ссылки на RFC и предложения по стандартам.
  • www.microsoft.com/rus/windows2000/library/security/w2k_IPSecurity.asp – Информация о реализации протокола IPSec в Windows2000 Server.

Благодарности

Вконтакте

Одноклассники

Изначально сеть Интернет использовалась узким кругом лиц, имеющих представление о политике безопасности. Соответственно явной необходимости в защите информации не было. Безопасность организовывалась на физическом уровне путем изоляции сети от посторонних лиц. Однако со временем Интернет становится публичной площадкой и постепенно возрастает потребность в создании протоколов, которые могли бы шифровать передаваемые данные.

В 1994 году Совет по архитектуре Интернет выпустил отчет “Безопасность архитектуры Интернет”. Данный отчет посвящался в основном проблемам защиты от несанкционированного мониторинга, подмены пакетов и управлению потоками данных. Требовалась разработка некоторого стандарта, способного решить все эти проблемы. В результате были созданы стандарты протоколов, в число которых входил IPsec.

IPsec (сокр. IP Security) – группа протоколов, предназначенных для обеспечения защиты данных, передаваемых по IP-сети. Задача IPsec сводится к тому, чтобы выбрать конкретные алгоритмы и механизмы и настроить соответствующим образом устройства, участвующие в создании безопасного соединения. IPsec находит применение в организации VPN-соединений.

При создании защищенного канала участникам данного процесса необходимо произвести следующие действия:

  1. Аутентифицировать друг друга
  2. Сгенерировать и обменяться ключами
  3. Договориться с помощью каких протоколов шифровать данные
  4. Начать передавать данные в зашифрованный туннель

Сам IPsec, как уже было указано ранее, состоит из нескольких протоколов, каждый из которых отвечает за конкретную стадию установления IPsec туннеля. Первым из них является IKE.

IKE (Internet Key Exchange) – протокол обмена ключами.

IKE используется на первой стадии установления соединения. К его задачам относят: аутентификация VPN-точек, организация новых IPsec соединений (через создание SA-пар), управление текущими соединениями. SA представляет из себя набор параметров защищенного соединения. При настроенном соединении для каждого протокола создается одна SA-пара: первая для протокола AH, вторая для ESP (расскажу про них дальше). Также стоит отметить, что SA является однонаправленным. Таким образом, при связи двух компьютеров будет использоваться четыре SA. IKE работает в двух фазах, при этом первая фаза может работать как в основном, так и в агрессивном режиме. Рассмотрим две фазы IKE-соединения:

Первая фаза (основной режим):

  1. Обмен параметрами безопасности IKE-соединения (алгоритмы и хэш-функции)
  2. На каждом конце туннеля генерируются общий секретный ключ
  3. Используя алгоритм Деффи-Хеллмана , стороны обмениваются общим секретным ключом
  4. Аутентификация обеих концов туннеля

Первая фаза (агрессивный режим): в первый пакет сразу помещается вся необходимая информация для установления IKE-соединения. Получатель посылает в ответ все, что необходимо для завершения обмена, после чего первому узлу необходимо лишь подтвердить соединение.

Агрессивный режим быстрей позволяет установить IKE-соединение, но при этом он менее безопасный, потому что стороны обмениваются информацией до того как безопасное соединение установлено.

Таким образом, первая фаза служит для создания защищенного туннеля, через который будут передаваться параметры для IPSec-туннеля. Во время второй фазы строится основной IPSec-туннель.

Во время второй фазы участники защищенного соединения по очереди предлагают друг другу варианты защищенного соединения и, если приходят к согласию, строят основной IPSec-туннель. Во второй фазы происходит согласование множества параметров:

  • Выбирается IPSec-протокол: AH (Authentication Header) и/или ESP (Encapsulation Security Payload)
  • Выбирается алгоритм для шифрования данных: DES, 3DES, AES
  • Выбирается алгоритм для аутентификации: SHA, MD5
  • Выбирается режим работы: туннельный или транспортный
  • Устанавливается время жизни IPSec-туннеля
  • Определяется трафик, который будет пускаться через VPN-туннель

AH (Authentication Header) – протокол IPSec, предназначенный для аутентификации. По сути это обычный опциональный заголовок, располагающийся между основным заголовком IP-пакета и полем данных. Предназначение AH – обеспечение защиты от атак, связанных с несанкционированным изменением данных в IP-пакете, в частности подмены исходного адреса сетевого уровня.

ESP (Encapsulation Security Payload) – протокол IPSec, предназначенный для шифрования данных. Дословно переводится как “поле данных безопасной инкапсуляции”. Также как и AH представляет из себя опциональный заголовок, вкладываемый в IP-пакет. Основной целью ESP является обеспечение конфиденциальности данных.

Вы могли заметить, что ESP и AH имеют разные форматы в зависимости от типа используемого режима: туннельного и транспортного.

Туннельный режим применяется чаще всего для удаленных VPN-подключений. При таком режиме исходный IP-пакет полностью инкапсулируется в новый таким образом, что для наблюдателя со стороны будет видно только соединение между двумя VPN-точками. Реальные IP-адреса источника и получателя видны не будут, их можно получить только при деинкапсуляции на VPN-точке. Исходя из этого, можно считать, что туннельный режим является более защищенным.

Транспортный режим применяется, как правило, в локальной сети при защите соединения между хостами. Этот режим обеспечивает защиту данных IP-пакета (TCP, UDP, протоколы верхних уровней). Грубо говоря, транспортный режим инкапсулирует все, что находится выше сетевого уровня эталонной модели OSI, при этом не затрагивая сам IP-заголовок. Естественно в таком случае данные IP-пакета: адрес источника и получателя будут видны извне.

Теперь перейдем к практике: настроим защищенный IPSec-туннель между двумя маршрутизаторами Cisco. Схема будет состоять из трех последовательно соединенных маршрутизаторов, при этом крайние R1 и R3 представляют из себя маршрутизаторы для локальных сетей, а центральный R2 имитирует Интернет. Прежде всего необходимо настроить связность между двумя локальными подсетями. Связность обеспечивается за счет GRE-туннеля. Про GRE-туннели я писал в , также там есть конфигурация GRE-туннеля для маршрутизаторов Cisco. Чтобы понимать логику дальнейший действий настоятельно рекомендую ознакомиться с этим материалом.

Итак, основной GRE-туннель у нас “прокинут”. Он не является защищенным и поэтому поверх него мы будем настраивать IPSec. Мы работали вот с такой схемой.

По легенде у нас было два офиса с подсетями LAN1 и LAN2. Необходимо обеспечить доступ компьютера из LAN1 к серверу, находящемуся в LAN2 (например, для доступа к файлам). Так вот, основной туннель мы создали. На сетевом уровне все работает прекрасно – пинг от компа до сервера есть. Но существует одна проблема: сервер содержит файлы, которые представляет коммерческую тайну для компании. Таким образом, необходимы механизмы шифрования трафика, а также аутентификация для того, чтобы никто кроме нас не мог получить доступ к этим файлам. И вот тут в бой вступает IPSec.

Конфигурация для Router A

Создаем политику безопасности и настраиваем ее RouterA(config)#crypto isakmp policy 1 Указываем метод шифрования (симметричный блочный шифр) RouterA(config)#encryption 3des Указываем метод хеширования MD5 RouterA(config)#hash md5 Указываем метод аутентификации (с предварительным ключом) RouterA(config)#authentication pre-share Выходим из режима редактирования политики безопасности RouterA(config)#exit Ключ для аутентификации (должен совпадать для обеих точек) RouterA(config)#crypto isakmp key PASS address 33.33.33.33 Применение набора преобразований RouterA(config)#crypto ipsec transform-set LAN1 esp-3des esp-md5-hmac Указываем режим работы IPSec (туннельный режим) RouterA(cfg-crypto-trans)#mode tunnel RouterA(cfg-crypto-trans)#exit Создаем крипто-карту (детали туннелирования) RouterA(config)#crypto map MAP1 10 ipsec-isakmp Указываем Ip-адрес маршрутизатора, с которым устанавливаем VPN RouterA(config-crypto-map)#set peer 33.33.33.33 Указываем набор политик безопасности RouterA(config-crypto-map)#set transform-set LAN1 Шифровать данные, которые будут проходить через список доступа под номером 100 RouterA(config-crypto-map)#match address 100 Выходим из режима настройки крипто-карты RouterA(config-crypto-map)#exit GRE-трафик с хоста 11.11.11.11 на хост 33.33.33.33 подлежит шифрованию RouterA(config)#access-list 100 permit gre host 11.11.11.11 host 33.33.33.33 Переходим в режим настройки внешнего интерфейса RouterA(config)#interface fa 0/1 Привязка карты шифрования MAP1 к внешнему интерфейсу RouterA(config-if)#crypto map MAP1

Аналогично настраивается Router B:

RouterB(config)#crypto isakmp policy 1 RouterB(config)#encryption 3des RouterB(config)#hash md5 RouterB(config)#authentication pre-share RouterB(config)#exit RouterB(config)#crypto isakmp key PASS address 11.11.11.11 RouterB(config)#crypto ipsec transform-set LAN2 esp-3des esp-md5-hmac RouterB(cfg-crypto-trans)#mode tunnel RouterB(cfg-crypto-trans)#exit RouterB(config)#crypto map MAP2 10 ipsec-isakmp RouterB(config-crypto-map)#set peer 11.11.11.11 RouterB(config-crypto-map)#set transform-set LAN2 RouterB(config-crypto-map)#match address 100 RouterB(config-crypto-map)#exit RouterB(config)#access-list 100 permit gre host 33.33.33.33 host 11.11.11.11 RouterB(config)#interface fa 0/1 RouterB(config-if)#crypto map MAP2

Поддержите проект

Друзья, сайт Netcloud каждый день развивается благодаря вашей поддержке. Мы планируем запустить новые рубрики статей, а также некоторые полезные сервисы.

У вас есть возможность поддержать проект и внести любую сумму, которую посчитаете нужной.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!