Самые эффективные солнечные батареи: КПД, мощность и показатели напряжения. От чего зависит кпд солнечных батарей и как увеличить этот показатель

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

Солнечные батареи - уникальный преобразователь энергии световых лучей в электричество с неограниченным внешним источником. Постоянно растущий спрос на данную продукцию обусловлен доступностью и экологичностью энергоснабжения без расхода теплоносителя, а также экономической окупаемостью за 2 года при минимальном сроке службы панелей в 25 лет.

Основой служат полупроводники или пленочные полимеры, пластина из слоев разной полярности преобразует свет в направленное движение электронов - это физическое явление неизменно для всех солнечных батарей. Вместе с тем такое исполнение ограничивает эффективность фотопреобразователей, часть энергии фотонов неизбежно теряется при прохождении границы p-n перехода. На практике на коэффициент полезного действия батарей влияют многие факторы: материал, площадь, расположение, интенсивность светового потока, что учитывается при покупке и эксплуатации.

Зависимость КПД от вида фотопреобразователей

Данный показатель определяется как процентное отношение вырабатываемой электрической энергии к мощности падающего солнечного света. На величину влияет чистота пластины и ее структура: пленочная, поли- или монокристаллическая. Последние виды относятся к самым дорогим и долго окупаемым, доступные солнечные батареи с высоким КПД для дома пока что производят только из слоев кремния разной полярности. Менее эффективными являются панели из террурида кадмия и CIGS, выпускаемые на основе пленочной технологии. КПД кадмиевых батарей составляет всего 11 %, но они дешевы и достаточно надежны в эксплуатации. Чуть выше показатель у пленки с нанесенными частицами галлия, меди, индия и селена, фотоэлементы CIGS эффективны на 15 %.

Для сравнения: КПД кремниевых преобразователей монокристаллического типа - 25 %, а у тонкопленочных или аморфных субмодулей из того же материала - максимум 10, устройства на основе органических полимеров имеют минимальное значение - 5 %. Многое зависит от площади панели, одиночные фотоэлементы ограничены в генерировании электричества.

Величина КПД маленьких солнечных батарей не позволяет использовать их для полноценного энергоснабжения, но их достаточно для запуска некоторых видов электроники. В любом случае, повышение эффективности устройств и минимизация их себестоимости является приоритетной задачей современной энергетики.

Факторы, влияющие на эффективность солнечных батарей

Коэффициент полезного действия зависит не только от применяемого материала и технологии, но и от целого комплекса внешних условий:

1. Интенсивности светового потока. В свою очередь этот показатель связан с географическими координатами расположенной батареи, в частности - с широтой.

2. Угла наклона конструкции. В идеале следует установить солнечные батареи, меняющие его, исходя из градиента падения лучей. Такая система стоит дороже, но она позволяет аккумулировать внушительное количество электричества (до 40–60 %) и меньше зависеть от сезона и времени суток.

3. Температуры окружающей среды. Нагрев плохо влияет на фотоэффект, вентилируемые батареи имеют очень высокий КПД. Как ни парадоксально, но в морозную ясную погоду они вырабатывают больше энергии, чем в жару (хотя общий кумулятивный эффект снижается из-за короткого светового дня).

4. Времени года. На практике КПД солнечных панелей зимой уменьшается в 2–8 раз, но это не связано с выпадением снега: на темной поверхности он быстро тает, кроме того - фотопреобразователи отлично воспринимают рассеянный свет.

5. Запыленности. Чем чище внешняя часть солнечных батарей, тем большее количество фотонов будет преобразовано, поэтому для повышения КПД рабочие поверхности рекомендуется протирать как минимум раз в два года.

6. Тени. Не секрет, что коэффициент полезного действия для солнечных батарей в пасмурную погоду значительно снижается, в туманных и дождливых районах их нет смысла ставить, то же относится и к затененным участкам. Панели нежелательно монтировать в тени высоких деревьев или соседних домов, при выборе месторасположения приоритет отдается южной стороне.

Постоянно осваивая все новые рубежи, солнечная энергетика движется вперед, поднимая значение КПД на новые уровни. Не секрет, что производительность, которую выдают , не может соперничать с устоявшимися источниками энергии . Виной всему низкая производительность существующих панелей.

Влияние на производительность различных факторов

Повышение коэффициента полезного действия - головная боль всех исследователей, работающих в данном направлении. На сегодняшний день КПД подобных устройств находится в пределах от 15 до 25 %. Процент очень низкий. Солнечные батареи являются крайне прихотливым устройством, стабильная работа которых зависит от множества причин.

К основным факторам, которые могут двояко влиять на производительность, можно отнести:

  • Материал основы солнечных батарей. Самым слабым в этом плане является поликристаллические солнечные батареи, имеющие КПД до 15 %. Перспективными же можно считать модули на основе индий-галлия или кадмий-теллура, имеющие до 20% производительности.
  • Ориентация приемника солнечного потока. В идеале, солнечные батареи своей рабочей поверхностью должны быть обращены к солнцу под прямым углом. В таком положении они должны находиться как можно больший период времени. Для увеличения продолжительности правильного позиционирования модулей в области солнца, более дорогие аналоги имеют в своем арсенале устройство слежения за солнцем, которое поворачивает батареи вслед за движением светила.
  • Перегрев установок. Повышенная температура негативно сказывается на выработке электроэнергии, поэтому при установке необходимо обеспечить достаточную вентиляцию и охлаждение панелей. Этого добиваются устройством вентилируемого зазора между панелью и поверхностью установки.
  • Тень отбрасываемая любым предметом, может значительно испортить показатели КПД всей системы.

Выполнив все требования, и по возможности установив панели в нужном положении, можно получить солнечные батареи с высоким КПД. Именно высоким, а не максимальным. Дело в том, что расчетный, или теоретический КПД, это величина, выведенная в лабораторных условиях, при средних параметрах продолжительности светового дня и количества пасмурных дней.

На практике, конечно же, процент полезного действия будет ниже.

Подбирая солнечные батареи для своего дома, лучше ориентироваться на нижний предел производительности, а не на верхний. Выбрав, таким образом, солнечные модули и все надлежащие для работы компоненты, можно быть уверенным в достаточной мощности устанавливаемой установки. Выбрав нижний предел производительности при расчетах, можно сэкономить на покупке дополнительных панелей, которые покупаются для перестраховки, на случай нехватки мощности.

Обнадеживающие перспективы развития

На сегодняшний день абсолютный рекорд КПД в солнечной энергетике принадлежит Американским разработчикам и составляет 42,8 %. Это значение на 2 % выше предыдущего рекорда 2010 года. Рекордное количество энергии удалось добиться при усовершенствовании солнечной батареи из кристаллического кремния. Уникальностью такого исследования служит тот факт, что все замеры были проведены исключительно в рабочих условиях, то есть не в лабораторных и тепличных помещениях, а в реальных местах предполагаемой установки.

В кулуарах все тех же технических лабораторий не прекращаются работы по увеличению последнего рекорда. Следующая цель разработчиков - граница КПД солнечных модулей в 50 %. С каждым днем человечество все ближе приближается к тому моменту, когда солнечная энергия полностью заменит вредные и дорогие, используемые в настоящее время, источники энергии, и станет в один ряд с такими гигантами как гидроэлектростанции.

Институт Fraunhofer по изучению систем солнечной энергии, Soitec, CEA-Leti и Берлинский центр Гельмгольца объявили, что достигли нового мирового рекорда эффективности преобразования энергии Солнца в электрическую энергию, использовав новую структуру солнечных элементов с четырьмя слоями. Как и некоторые другие многослойные фотоэлементы, эта микросхема предназначена для работы с концентратором, который концентрирует поток солнечных лучей в 297,3 раза, то есть площадь линз концентратора примерно в 300 раз больше площади фотоэлемента. КПД 44,7% относится к широкому спектру солнечного излучения: от ультрафиолета до инфракрасного. Энергия волн длиной 200-1800 нм забирается четырьмя слоями ячейки. Это важный шаг к удешевлению использования солнечной электроэнергии и приближение к важному рубежу в 50% эффективности.

Солнечные элементы, составленные из четырех слоев из соединенных прямым способом III-IV полупроводников, достигли эффективности в 44,7%.


В мае 2013 года немецко-французская команда из Fraunhofer ISE, Soitec, CEA-Leti и Helmholtz Center Berlin уже объявляла о создании солнечных элементов с эффективностью в 43,6%. На базе этого результата и благодаря дальнейшей интенсивной исследовательской работе и шагов по оптимизации и была получена эффективность 44,7%.
Эти солнечные элементы используются в фотоэлектрическом концентраторе (ФЭК), технологии, эффективность которой более чем вдвое превышает эффективность обычных фотоэлектрических станций в богатых солнечными лучами местах. Использование полупроводников III-V, которые изначально использовалась в космических технологиях, помогло реализовать высокую эффективность для преобразования солнечного света в электричество. При этом соединении солнечных элементов, ячейки, сделанные из полупроводников III-V, уложены друг на друга. Каждый слой поглощает волны различной длины из солнечного спектра.


Внешняя квантовая эффективность четырехэлементной солнечной батареи (для каждого из четырех слоев – свой цвет).



Вольтамперная характеристика для поставивших рекорд солнечных элементов.


"Мы невероятно гордимся нашей командой, которая уже в течение трех лет работает над этим солнечным элементом", – говорит Франк Димрот, заведующий отделом и руководитель проекта, отвечающий за развитие этого направления в Институте Fraunhofer. “Этот вид соединения солнечных элементов усовершенствовался на протяжении нескольких лет, в результате тщательной экспериментальной работы. Помимо улучшенных материалов и оптимизации структуры, важную роль играет и новая технология "пластинная связка". С помощью этой технологии мы имеем возможность соединить два полупроводниковых кристалла, которые нельзя вырастить один поверх другого, сохраняя при этом их высокое качество. Таким образом, мы можем создать оптимальное сочетание, чтобы достичь высокой эффективности солнечных элементов”.
"Этот мировой рекорд, увеличивший уровень эффективности более чем на 1% менее чем за 4 месяца, демонстрирует крайне высокий потенциал нового вида соединения солнечных элементов ячейки." – говорит Андре-Жак Обертон-Эрве, председатель и исполнительный директор Soitec. "Новое достижение подтверждает тенденцию к достижению более высокой эффективности, что играет ключевую роль в конкурентоспособности наших собственных систем солнечных элементов. Мы очень гордимся этим достижением, и оно демонстрирует успешность нашего сотрудничества".
"Новый рекорд укрепляет доверие к такому способу, как прямая связь полупроводников. Этот способ был разработан в рамках нашего сотрудничества с Soitec и Институтом Fraunhofer. Мы очень гордимся этим новым результатом, открывающим широкие перспективы для “солнечных” технологий, основанных на новом виде соединения элементов", – сказал генеральный директор Leti Лоран Малье.
Модули концентратора производятся Soitec (проект начинался в 2005 году под названием "Concentrix Solar" и был ответвлением похожего проекта Института Fraunhofer). Эта эффективная технология используется в электростанциях, расположенных в местах с высокой долей прямого солнечного излучения. На данный момент у Soitec есть установки в 18 странах, в том числе в Италии, Франции, Южной Африке и штате Калифорния.

Рекордсменом по КПД среди солнечных батарей, из числа так или иначе доступных на рынке сегодня, являются, разработанные Институтом гелиоэнергетических систем Общества имени Фраунгофера в Германии, солнечные батареи на базе многослойных фотоэлементов. Начиная с 2005 года, их коммерческим внедрением занимается компания Soitec.

Размер самих фотоэлементов не превышает 4 миллиметра, а фокусировка солнечного света на них достигается путем применения вспомогательных концентрирующих линз, благодаря которым насыщенный солнечный свет преобразуется в электричество с КПД достигающим 47%.

Батарея содержит четыре p-n перехода, чтобы четыре различные звена фотоэлемента могли эффективно принимать и преобразовывать излучение с конкретной длиной волны, из солнечного света, сконцентрированного в 297,3 раза, в диапазоне длин волн от инфракрасного до ультрафиолетового.

Исследователи под руководством Франка Димирота изначально поставили перед собой задачу вырастить многослойный кристалл, и решение было найдено, - они срастили подложки для выращивания, и в результате был получен кристалл с различными полупроводниковыми слоями, с четырьмя фотоэлектрическими подъячейками.

Многослойные фотоэлементы давно используются на космических аппаратах, но теперь на их основе запущены и солнечные станции уже в 18 странах. Это становится возможным благодаря совершенствованию и удешевлению технологии. В итоге, количество стран, снабженных новыми солнечными станциями, будет расти, и налицо тенденция к конкуренции на рынке промышленных солнечных батарей.

На втором месте - солнечные батареи на базе трехслойных фотоэлементов Sharp, КПД которых достиг 44,4%. Фосфид индия-галлия - первый слой фотоэлемента, арсенид галлия - второй, арсенид индия-галлия - третий слой. Три слоя разделены диэлектриком, который служит для достижения туннельного эффекта.

Концентрация света на фотоэлемент достигается благодаря линзе Френеля, как и у немецких разработчиков, - свет солнца концентрируется в 302 раза, и преобразуется трехслойным полупроводниковым фотоэлементом.

Научные исследования по развитию этой технологии непрерывно велись Sharp, начиная с 2003 года при поддержке NEDO - японской организации общественного управления, содействующей научным исследованиям и развитию, а также распространению промышленных, энергетических и экологических технологий. К 2013 году Sharp был достигнут рекорд в 44,4%.

За два года до Sharp, в 2011 году, американская компания Solar Junction уже выпустила аналогичные батареи, но с КПД 43,5%, элементы которых обладали размером 5 на 5 мм, и фокусировка также производилась линзами, концентрируя свет солнца в 400 раз. Фотоэлементы были трехпереходными на основе германия, и группа планировала даже создать пяти и шестипереходные фотоэлементы, чтобы лучше захватить спектр. Исследования ведутся компанией и по сей день.

Таким образом, максимально рекордным КПД обладают солнечные батареи, выполненные в сочетании с концентраторами, которые, как мы видим, производят и в Европе, и в Азии, и в Америке. Но эти батареи в основном изготавливаются для постройки наземных солнечных электростанций крупных масштабов и для эффективного электроснабжения космических аппаратов.

Недавно был поставлен рекорд в сфере обычных потребительских солнечных панелей, которые доступны большинству желающих снабдить ими, например, крышу дома.

В середине осени 2015 года компания Илона Маска «SolarCity» представила наиболее эффективные потребительские солнечные панели, КПД которых превышает 22%.

Этот показатель подтвердили замеры, проведенные лабораторией Renewable Energy Test Center. Завод в Баффало уже ставит план производства на каждый день - от 9 до 10 тысяч солнечных панелей, точные характеристики которых пока не сообщаются. Компания уже планирует снабжать своими батареями не менее 200000 домов ежегодно.

Дело в том, что оптимизированный технологический процесс позволил предприятию значительно снизить стоимость производства, при этом повысив КПД в 2 раза по сравнению с широко распространенными потребительскими кремниевыми солнечными панелями. Маск уверен, что именно его солнечные панели будут пользоваться наибольшей популярностью у домовладельцев в ближайшем будущем.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!