Сделать самому лабораторный блок питания. Блок питания: с регулировкой и без, лабораторный, импульсный, устройство, ремонт

Доброго времени суток форумчане и гости сайта Радиосхемы ! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, . В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее.

Изготовить лабораторный блок питания своими руками несложно, если имеются навыки обращения с паяльником и вы разбираетесь в электрических схемах. В зависимости от параметров источника вы можете с его помощью заряжать аккумуляторы, подключать практически любую бытовую аппаратуру, использовать для опытов и экспериментов при конструировании электронных средств. Главное при монтаже - использование проверенных схем и качество сборки. Чем надежнее корпус и соединения, тем удобнее работать с источником питания. Желательно наличие регулировок и приборов контроля выходного тока и напряжения.

Простейший самодельный блок питания

Если у вас нет навыков в изготовлении электрических приборов, то лучше начинать с самого простого, постепенно передвигаясь к сложным конструкциям. Состав простейшего источника постоянного напряжения:

  1. Трансформатор с двумя обмотками (первичной - для подключения к сети, вторичной - для подключения потребителей).
  2. Один или четыре диода для выпрямления переменного тока.
  3. Электролитический конденсатор для отсечки переменной составляющей выходного сигнала.
  4. Соединительные провода.

В случае если вы используете в схеме один полупроводниковый диод, то получите однополупериодный выпрямитель. Если применяете диодную сборку или мостовую схему включения, то блок питания называется двухполупериодным. Разница в выходном сигнале - во втором случае меньше пульсаций.

Такой самодельный блок питания хорош только в тех случаях, когда необходимо провести подключение приборов с одним рабочим напряжением. Так, если вы занимаетесь конструированием автомобильной электроники либо ее ремонтом, лучше выбирать трансформатор с выходным напряжением 12-14 вольт. От количества витков вторичной обмотки зависит выходное напряжение, а от сечения используемого провода - сила тока (чем больше толщина, тем больше ток).

Как сделать двухполярное питание?

Такой источник необходим для обеспечения работы некоторых микросхем (например, усилителей мощности и НЧ). Отличает двухполярный блок питания следующая особенность: на выходе у него отрицательный полюс, положительный и общий. Для реализации такой схемы требуется применять трансформатор, вторичная обмотка которого имеет средний вывод (причем значение переменного напряжения между средним и крайними должно быть одинаковое). Если нет трансформатора, удовлетворяющего этому условию, можно модернизировать любой, у которого сетевая обмотка рассчитана на 220 вольт.

Удалите вторичную обмотку, только сначала проведите замер напряжения на ней. Сосчитайте число витков и разделите на напряжение. Полученное число - это количество витков, необходимых для вырабатывания 1 вольта. Если вам нужно получить двухполярный блок питания с напряжением 12 вольт, то потребуется намотать две одинаковых обмотки. Начало одной соедините с концом второй и эту среднюю точку подключите к общему проводу. Два вывода трансформатора необходимо соединить с диодной сборкой. Отличие от однополярного источника - нужно применять 2 электролитических конденсатора, соединенных последовательно, средняя точка включается с корпусом устройства.

Регулировка напряжения в однополярном источнике питания

Задача может показаться не очень простой, но сделать регулируемый блок питания можно путем сборки схемы из одного или двух полупроводниковых транзисторов. Но потребуется на выходе установить хотя бы вольтметр для контроля напряжения. Для этой цели можно использовать стрелочный индикатор с приемлемым диапазоном измерений. Можно приобрести дешевый цифровой мультиметр и адаптировать его под ваши нужды. Для этого потребуется разобрать его, установить при помощи пайки нужное положение переключателя (при интервале изменения напряжения 1-15 вольт требуется, чтобы прибор мог проводить замер напряжения до 20 вольт).

Регулируемый блок питания можно подключать к любому электрическому прибору. Сначала только вам потребуется выставить необходимое значение напряжения, чтобы не вывести из строя приборы. Изменение напряжения производится при помощи переменного резистора. Его конструкцию вы вправе выбрать самостоятельно. Это может быть даже ползункового типа устройство, главное - соблюдение номинального сопротивления. Чтобы блок питания было удобно использовать, можно установить переменный резистор, спаренный с выключателем. Это позволит избавиться от лишнего тумблера и облегчить отключение аппаратуры.

Регулировка напряжения в двухполярном источнике

Такая конструкция окажется посложнее, но и ее можно реализовать достаточно быстро при наличии всех необходимых элементов. Смастерить простой лабораторный блок питания, да еще двухполярный и с регулировкой напряжения, сможет не каждый. Схема усложняется тем, что требуется установка не только полупроводникового транзистора, работающего в режиме ключа, но и операционного усилителя, стабилитронов. При пайке полупроводников будьте аккуратны: старайтесь не сильно их нагревать, ведь диапазон допустимых температур у них крайне мал. При чрезмерном нагреве кристаллы германия и кремния разрушаются, в результате устройство перестает функционировать.

Когда делаете лабораторный блок питания своими руками, помните одну важную деталь: транзисторы требуется монтировать на алюминиевом радиаторе. Чем мощнее источник питания, тем больше площадь радиатора должна быть. Особое внимание уделяйте качеству пайки и проводам. Для маломощных устройств допускается использовать тонкие провода. Но если выходной ток большой, то необходимо применять провода с толстой изоляцией и большой площадью сечения. От надежности коммутации зависит ваша безопасность и удобство пользования устройством. Даже короткое замыкание во вторичной цепи может стать причиной возгорания, поэтому при изготовлении блока питания следует позаботиться о защите.

Регулировка напряжения в стиле ретро

Да, именно так можно назвать осуществление регулировки подобным образом. Для реализации необходимо вторичную обмотку трансформатора перемотать и сделать несколько выводов в зависимости от того, какой шаг изменения напряжения и диапазон вам нужен. Например, лабораторный блок питания 30В 10А с шагом в 1 вольт должен иметь 30 выводов. Между выпрямителем и трансформатором необходимо установить переключатель. Вряд ли получится найти на 30 положений, а если и найдете, то его габариты окажутся очень большими. Для монтажа в небольшом корпусе он явно не подойдет, поэтому лучше использовать для изготовления стандартные напряжения - 5, 9, 12, 18, 24, 30 вольт. Этого вполне достаточно для удобного пользования устройством в домашней мастерской.

Для изготовления и расчета вторичной обмотки трансформатора вам нужно сделать следующее:

  1. Определить, какое напряжение собирается одним витком обмотки. Для удобства намотайте 10 витков, включите трансформатор в сеть и проведите замер напряжения. Полученное значение разделите на 10.
  2. Проведите намотку вторичной обмотки, предварительно отключив трансформатор от сети. Если у вас получилось, что один виток собирает 0,5 В, то для получения 5 В вам требуется сделать отвод от 10-го витка. И по подобной схеме делаете отводы для остальных стандартных значений напряжений.

Сделать подобный лабораторный блок питания своими руками под силу каждому, а самое главное - не требуется паять схему на транзисторах. Выводы вторичной обмотки соединяете с переключателем, чтобы значения напряжений изменялись от меньшего к большему. Центральный вывод переключателя соединяется с выпрямителем, нижний по схеме вывод трансформатора подается на корпус устройства.

Особенности импульсных источников питания

Такие схемы используются практически во всех современных приборах - в зарядных устройствах телефонов, в блоках питания компьютеров и телевизоров и др. Изготовить лабораторный блок питания, импульсный особенно, оказывается проблематично: слишком много нюансов требуется учитывать. Во-первых, относительно сложная схема и непростой принцип действия. Во-вторых, большая часть устройства работает под высоким напряжением, которое равно тому, которое протекает в сети. Посмотрите на основные узлы такого блока питания (на примере компьютерного):

  1. Сетевой блок выпрямления, предназначенный для преобразования переменного тока напряжением 220 вольт в постоянный.
  2. Инвертор, преобразующий постоянное напряжение в сигналы прямоугольной формы с высокой частотой. Сюда же входит и специальный трансформатор импульсного типа, который уменьшает величину напряжения, чтобы запитать компоненты ПК.
  3. Управление, отвечающее за правильную работу всех элементов блока питания.
  4. Усилительный каскад, предназначенный для усиления сигналов ШИМ-контроллера.
  5. Блок стабилизации и выпрямления выходного импульсного напряжения.

Подобные узлы и элементы присутствуют во всех импульсных источниках питания.

Блок питания от компьютера

Стоимость даже нового блока питания, который устанавливается в компьютерах, довольно низкая. Зато вы получаете готовую конструкцию, можно даже не делать шасси. Один недостаток - на выходе имеются только стандартные значения напряжения (12 и 5 вольт). Но для домашней лаборатории этого вполне достаточно. Пользуется популярностью лабораторный блок питания из ATX по той причине, что не нужно совершать большие переделки. А чем проще конструкция, тем лучше. Но есть и «болезни» у таких устройств, но излечить их можно достаточно просто.

Зачастую выходят из строя электролитические конденсаторы. Из них вытекает электролит, это можно увидеть даже невооруженным глазом: на печатной плате появляется слой этого раствора. Он гелеобразный или жидкий, со временем застывает и становится твердым. Чтобы отремонтировать лабораторный блок питания из БП компьютера, нужно установить новые электролитические конденсаторы. Вторая поломка, которая встречается намного реже, заключается в пробое одного или нескольких полупроводниковых диодов. Симптом - это выход из строя плавкого предохранителя, смонтированного на печатной плате. Для ремонта нужно прозвонить все диоды, установленные в мостовой схеме.

Способы защиты блоков питания

Простейший способ обезопасить себя - это установка плавких предохранителей. Использовать такой лабораторный блок питания с защитой можно, не боясь, что из-за короткого замыкания произойдет возгорание. Для реализации этого решения вам потребуется установить два плавких предохранителя в цепи питания сетевой обмотки. Их нужно брать на напряжение 220 вольт и ток порядка 5 ампер для маломощных приборов. На выходе источника питания следует установить плавкие предохранители с подходящими параметрами. Например, при защите выходной цепи с напряжением 12 вольт можно применить предохранители, используемые в автомобилях. Значение тока подбирается исходя из максимальной мощности потребителя.

Но на дворе - век высоких технологий, а делать защиту при помощи предохранителей с экономической точки зрения не очень выгодно. Приходится проводить замену элементов после каждого случайного задевания проводов питания. Как вариант - вместо обычных плавких вставок установить самовосстанавливающиеся предохранители. Но ресурс у них небольшой: могут верой и правдой прослужить несколько лет, а могут и через 30-50 отключений выйти из строя. Но блок питания лабораторный 5А, если он собран грамотно, функционирует правильно и не требует дополнительных устройств защиты. Элементы нельзя назвать надежными, зачастую бытовая техника приходит в негодность по причине поломки таких предохранителей. Намного эффективнее оказывается применение релейной схемы либо тиристорной. В качестве устройства аварийного отключения могут также использоваться симисторы.

Как сделать лицевую панель?

Большая часть работ - это проектирование корпуса, а не сборка электрической схемы. Придется вооружиться дрелью, напильниками, а при необходимости окрашивания еще и освоить малярное дело. Можно изготовить самодельный блок питания на основе корпуса от какого-нибудь устройства. Но если есть возможность приобрести листовой алюминий, то при желании вы сделаете красивое шасси, которое прослужит вам долгие годы. Для начала нарисуйте эскиз, в котором расположите все элементы конструкции. Особое внимание уделите проектированию лицевой панели. Ее можно сделать из тонкого алюминия, только изнутри провести усиление - прикрутить к алюминиевым уголкам, которые применяются для придания большей жесткости конструкции.

В лицевой панели обязательно следует предусмотреть отверстия для установки измерительных приборов, светодиодов (или ламп накаливания), клемм, соединенных с выходом блока питания, гнезда для установки плавких предохранителей (при выборе такого варианта защиты). Если вид лицевой панели не очень привлекательный, то ее нужно покрасить. Для этого обезжириваете и зачищаете до блеска всю поверхность. Перед началом окрашивания сделайте все необходимые отверстия. Нанесите 2-3 слоя грунтовки на прогретую поверхность, дайте высохнуть. Далее нанесите столько же слоев краски. В качестве финишного покрытия нужно применять лак. В итоге мощный лабораторный блок питания благодаря краске и получившемуся блеску будет выглядеть красиво и привлекательно, впишется в интерьер любой мастерской.

Как изготовить шасси для блока питания?

Красиво будет выглядеть только та конструкция, которая полностью изготавливается самостоятельно. Но в качестве материала можно использовать что угодно: начиная с листового алюминия и заканчивая корпусами от персональных компьютеров. Нужно только тщательно продумать всю конструкцию, чтобы не возникло непредвиденных ситуаций. Если выходным каскадам требуется дополнительное охлаждение, то установите кулер для этой цели. Он может работать как постоянно при включенном устройстве, так и в автоматическом режиме. Для реализации последнего лучше всего применить простой микроконтроллер и датчик температуры. Датчик отслеживает значение температуры радиатора, а в микроконтроллере заложено то значение, при котором необходимо включить обдув воздухом. Даже лабораторный блок питания 10А, мощность которого немаленькая, будет стабильно работать с такой системой охлаждения.

Для обдува нужен воздух извне, поэтому вам потребуется устанавливать кулер и радиатор на задней стенке блока питания. Для обеспечения жесткости шасси применяйте алюминиевые уголки, из которых сначала сформируйте «скелет», а после установите на него обшивку - пластины из того же алюминия. Если есть возможность, то уголки соедините при помощи сварки, это увеличит прочность. Нижняя часть шасси должна быть крепкой, так как на ней монтируется силовой трансформатор. Чем выше мощность, тем большие габариты трансформатора, тем больше его вес. В качестве примера можно сравнить лабораторный блок питания 30В 5А и подобную конструкцию, но на 5 вольт и током порядка 1 А. У последнего габариты окажутся намного меньшими, да и вес незначительный.

Между электронными компонентами и корпусом должен находиться слой изоляции. Делать это нужно исключительно для себя, чтобы в случае случайного обрыва провода внутри блока он не закоротил на корпус. Перед установкой обшивки на «скелет» проведите ее изоляцию. Можно наклеить плотный картон или толстую липкую ленту. Главное, чтобы материал не проводил электричество. При помощи такой доработки улучшается безопасность. Но трансформатор может издавать неприятный гул, от которого избавиться можно путем фиксации и проклейки пластин сердечника, а также установки между корпусом и шасси резиновых подушек. Но максимальный эффект вы получите только при комбинировании этих решений.

Подведение итогов

В завершение стоит упомянуть, что все монтажные и испытательные работы проводятся при наличии напряжения, опасного для жизни. Поэтому нужно думать о себе, в комнате обязательно установите автоматические выключатели, спаренные с устройствами защитного отключения электроэнергии. Даже если вы коснетесь фазы, удар током не получите, так как сработает защита.

При проведении работ с импульсными блоками питания компьютеров соблюдайте технику безопасности. Электролитические конденсаторы, находящиеся в их конструкции, долгое время после отключения находятся под напряжением. По этой причине перед началом ремонта разрядите конденсаторы, соединив их выводы. Не пугайтесь только искры, она не причинит вреда ни вам, ни приборам.

Когда делаете лабораторный блок питания своими руками, обращайте внимание на все мелочи. Ведь для вас главное - это обеспечить стабильную, безопасную и удобную его работу. А достичь этого можно только в том случае, когда тщательно продуманы все мелочи, причем не только в электрической схеме, но и в корпусе устройства. Лишними приборы контроля в конструкции не будут, поэтому установите их, чтобы иметь представление о том, например, какой ток потребляет устройство, собранное вами в домашней лаборатории.

Примерно раз в год во меня просыпается неумолимое желание сделать лабораторный блок питания (например, свой прошлый лабораторник я описывал ). А тут еще и предложили что-нибудь обозреть - ну и я не устоял, ибо очень давно хотел попробовать данный модуль. К сожалению, расчленёнки не будет, потому что конструкция крайне сложно разбирается, и я побоялся не собрать нормально в обратный зад. :)

подобного модуля уже был, но данный - привлёк индикацией. Всё же большие цифры гораздо удобнее мелких.

Начну я, однако, не с главного героя обзора, а со второго, не менее важного - (также предоставленного для обзора), без которого данный модуль бесполезен.



Блок питания несколько отличается от первоначальной версии, и, к сожалению, не в лучшую сторону. Внешние отличия заключаются в надписи ac-dc 24v вместо 2412DC на первоначальной версии, и наличии некоего адреса сайта на нижней стороне платы. «Внутренние» отличия гораздо интереснее. Но для начала - внешний вид.

Главная проблема данного экземпляра (а скорее всей партии) - некачественный выходной разъем. он совершенно отвратительно паяется, ну и закономерно плохо припаян. Пропаять нужно сразу, потому что держится он еле-еле. Впрочем, как я написал - это проблема экземпляра либо партии, и в целом вероятность повтора данной проблемы у других покупателей через какое-то время - не так и велика.

В целом пайка не блещет аккуратностью, и желательно плату осмотреть и пропаять подозрительные места

Знаменитый конденсатор запаян как и раньше самый обычный, и его тоже желательно заменить, как писал в уважаемый Kirich. Также он рекомендует повесить керамику по выходу и параллельно выходным электролитам.

Диод снаббера, однако, запаян правильно:

Плата хорошо отмыта, и в целом всё с ней хорошо, если бы не одно маленькое НО. Похоже, что производитель ШИМ-контроллера, на котором собран данный БП, решил усовершенствовать «зелёный» режим, и вместо снижения частоты на малой нагрузке - выдаёт на затвор силового транзистора пачки импульсов на штатных 62-64кГц. Выглядит на осцилле это как короткая пачка управляющих испульсов и длинная пауза - порядка 30мС (при работе без нагрузки), а с увеличением нагрузки эти паузы уменьшаются. И всё бы хорошо, если не то самое маленькое НО - на выходе в результате имеем изрядную «пилу»:

На фото - работа без нагрузки и с одноамперной кажется нагрузкой. AC 0.2В/деление и 5мС/деление.

Похоже, что мои соображения выше правильны, и это такая интересная «особенность» новых версиий БП. Старые, как говорили, изрядно снижали частоту - вплоть до 14-15кГц, а эти вот начинают работать «импульсно» и выдавать пилу на выход. Как с этим бороться мне не совсем ясно - пробовал я и конденсаторы большей емкости ставить - ничерта не даёт.

Естественно, в комментариях приветствуются советы по доработке, потому что сейчас похоже все БП пошли с такой вот «фичей», во всяком случае в комментах к обзору Kirichа я встречал похожие осциллки.

Впрочем, как ни странно - в итоге всё работает вполне нормально.

Ну что, перейдём к главному герою?

Поставляется в прозрачной пластиковой коробочке, завёрнутый в инструкцию. Инструкция крупная, на хорошей бумаге, на китайском и вполне вменяемом английском.





Как видим заявлена точность 0.5%, и надо сказать что он вполне ее обеспечивает, хотя на совсем малых токах и врёт, что, впрочем, закономерно - но обэтом ниже.

Сам модуль компактный (размеры окна в корпусе для установки - 39х71.5, плюс выборки до 75.5, глубина 35.5), дисплей 28х27, высота цифр 5мм (на «обычном» ампервольтметре 7.5мм). Сам дисплей яркий, контрастный, с хорошими углами обзора. Единственное что не очень нравится - довольно медленное обновление (показания наверно раза два в секунду обновляются). Но это думаю не в дисплее проблема, а в прошивке, да и не напрягает оно совершенно.

Дополнительная информация













На 8-ногой микрухе написано XL7005A - шим-контроллер 150кГц 0.4А

К сожалению, разобрать его - нетривиальная задача, ибо три платы спаяны «бутербродом», три разъема по 8 контактов, которые стоят довольно плотненько, и можно с лёгкостью чего-нить задеть и испортить. так что извиняйте. Над энкодером видны надписи rx gnd tx - видимо модуль поддерживает передачу данных, ну и выше явно разъем для перепрошивки. В целом качество сборки оставило приятные впечатления, Флюс не смыт в местах пайки переходных контактов, что закономерно и понятно, ну и флюс явно такой который не требует смывания.

Понятно, что приобретается такой модуль не для разборки, а для сборки, и не непонятно чего, но блока питания. Для тех кто не в курсе что такое лабораторный БП и для чего он нужен - кратенько напишу, что это регулируемый блок питания, с ограничением выходного тока и регулировкой выходного напряжения. Нужен он для запитки устройств «на столе», например при ремонте или разработке. Позволяет не спалить что-то случайно;) Также им можно например заряжать аккумуляторы.

Переходим к сборке блока питания. Пожалуй, спрячу под спойлер, а то фоток будет много.

сборка блока питания

собирать будем в корпусе Kradex Z-3. все компоненты входят в него настолько хорошо, что создается впечатление что они просто созданы друг для друга. ;)

Корпуса kradex отличаются идиотской конструкцией соединяющих стоек - они слишком далеко от боковых стенок и слишком близко к передней и задней. поэтому - безжалостно выкусываем, и переносим в серединку корпуса, где они никому не будут мешать. крепим дихлорэтаном. аналогично - делаем стоечки для крепления БП.

Далее - фрезеруем переднюю и заднюю панели, а также отверстия для вентилятора. в принципе - не так он и нужен, но я решил сразу поставить, чтобы два раза не вставать. к сожалению, места хватило только для 50мм вентилятора.



















Так как на «морде» будет USB разъем - припаиваем к нему текстолитовые «уши», а к корпусу приклеиваем кусочки пластика с предварительно нарезанной резьбой м3. самые короткие винтики «от компьютера» отлично подходят для крепления разъема к передней панели.

То что фрезу в патрон зажимать низя я в курсе, и фанговый патрон есть, и цанги хорошие, но я разгильдяй, да и материал тут мягкий, поэтому я ленюсь ставить другой патрон и такую мелочёвку фрезерую так.

Для питания USB и вентилятора я применил преобразователи из прошлого моего обзора, приклеив их к радиатору из ш-образного профиля 8х15. очень способствует улучшению охлаждения. вентилятор запитал от 6.5В - на 5В он дует совсем слабо. хотел приделать еще регулировку скорости, но поленился, да и решил что отдельного преобразователя хватит для ручной установки любых понравившихся оборотов.

«первичный» блок питания я решил доработать - чуть повысить напряжение, чтобы получить на выходе всего устройства хотя бы 24В. с учетом ограничения максимального входного напряжения примененных преобразователей в 28В - я решил «разогнать» БП до 26В. для этого параллельно резистору R19 припаиваем резистор на 22кОм.



Ну и результат:



Теперь перейдём к тестированию.

Для начала - как оно вообще работает. верхняя маленькая строка - установленные значения тока и напряжения. большие цифры - это измеренные значения на выходе, ну и снизу - входное напряжение (минимальная разность между входом и выходом около вольта). Пиктограммки справа показывают текущее состояние: блокировка, состояние (ок/не ок), режим выхода (cc/cv) и состояне выхода - вкл/выкл. При включении выход выключен. Включение и выключение выхода - кнопкой под энкодером. Пиктограммка выкл - красным, вкл - зеленым. Блокировка - длительным нажатием энкодера.

При нажатии кнопки set - у нас появляется возможность изменять текущие значения тока и напряжения. изменяемый разряд подсвечивается красным в верхней строчке, и переключается нажатием на энкодер. вращением энкодера - изменяется значение. при переходе с 9 на 0 - увеличивается старший разряд.

При повторном нажатии на set - попадаем в меню «расширенных» настроек. А в верхней строчке соответственно начинают отображаться текущие параметры выхода - ток и напряжение.

Тут у нас есть выходное напряжение, выходной ток, напряжение/ток/мощность срабатывания защиты, яркость подсветки, и текущая ячейка памяти. ячеек этих 10. М0 - это «ручной» режим, то есть то чем мы балуемся сейчас. эти значения сохраняются и восстанавливаются при последующем включении.

Выбор параметра - кнопками вверх/вниз, далее нажимаем на энкодер и изменяем параметр, выход кнопкой set. для того чтобы сохранить значения в какую-то ячейку памяти, нужно вначале ее выбрать в нижнем пункте меню, потом изменить всё что нужно, а потом перейти в нижнем пункте меню на номер ячейки и подержать кнопку set две секунды. Номер ячейки в которую сохранено - появится слева между пиктограммами.

On|off в нижнем пункте меню справа - это состояние выхода при выборе данной ячейки памяти. off - выключено, on - «как было».

Управление, конечно, немного странноватое. Как работают эти «защиты» я честно говоря так и не понял, пользуюсь просто в режиме ограничения тока и стабилизации напряжения.

Далее. следующее нажатие кнопки set выносит нас на «главный экран». Выбор ячейки памяти осуществляется либо удержанием кнопки вверх для выбора М1, либо кнопки вниз для выбора М2, либо кнопки set - а далее энкодером выбираем номер ячейки. досадно, что при переключении ячеек памяти не отображаются занесенные туда ток и напряжение. Это было бы логично и удобно - но нет.

Теперь - измерения. Вынес в табличку, и, честно говоря, даже не буду толком считать и комментировать, ибо уже чего-то котелок не варит;) Set - это то что выставляем, изм - это то что он измеряет на своем выходе, тестер - соответственно что показывает тестер. На малых токах врёт довольно значительно, но ИМХО это простительно. Со 100мА и выше - стабильно врёт на 3мА (занижает), на меньших токах - не так сильно, но тоже врёт. Как на мой взгляд - в погрешности на адекватных токах влазит (0.5% +2 цифры). Пусть метрологи поправят если что;) На малых токах конечно мимо.

А, чуть не забыл. измерения помех и пульсаций.

На малых токах:

На больших (2.5А кажется) токах:

AC 0,2В 500мкС.

При включении напряжение плавно нарастает, включение происходит в режиме СС, потом переходит в режим CV:

Если подключить светодиод, а потом включить выход - то горит ок. Если вначале включить выход, а потом подключить светодиод - то даже пикнуть не успевает, перегорает мгновенно, что предсказуемо.

Подытоживая: мне очень нравится. ИМХО за эти деньги (до 50 баксов) альтернатив просто нет. По работе он будет ИМХО не хуже любого другого китайского лабораторника. Не самое продуманное управление, но и не так всё страшно - думаю можно будет привыкнуть достаточно быстро, да и чем тут особо управлять-то… один раз настроил, и радуйся, а крутить напряжения потом - дело кнопки и энкодера. По конструкции БП - я уже не уверен, что гнёзда нужно было делать слева, возможно стоило перенести их вправо - что, впрочем, можно сделать банально перевернув переднюю панель. Несомненно, в комментах накидают ссылок на более дешевые варианты, но даже за эту сумму - всё вполне неплохо.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +92 Добавить в избранное Обзор понравился +53 +127

Каждый начинающий радиолюбитель нуждается в лабораторном блоке питания. Чтобы правильно его сделать, нужно подобрать подходящую схему, а с этим обычно возникает много проблем.

Виды и особенности блоков питания

Встречаются два типа блоков питания:

  • Импульсный;
  • Линейный.

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.


Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Эта схема разработана достаточно давно, и периодически модернизировалась. На ней появилось несколько диодных мостов, а измерительная головка получила не стандартный метод включения. На замену транзистору MJ4502 пришел менее мощный аналог – КТ818. Так же появились фильтрующие конденсаторы.

Монтаж блока своими руками

При очередной сборке, схема блока получила новую интерпретацию. В конденсаторах выходного типа увеличилась емкость, а для защиты были добавлены несколько диодов.

Транзистор типа КТ818 был в этой схеме неподходящим элементом. Он сильно перегревался, и часто приводил к поломке. Ему нашли замену более выгодным вариантом TIP36C, в схеме он имеет параллельное подключение.


Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Этот этап регулировки позволяет подсоединять нагрузку к выходному концу блока питания. Следует стараться избегать короткого замыкания, иначе транзисторы тут же перегорят, а вслед за ними стабилизатор LM317.


Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Основные радиоэлементы

Чтобы собрать мощный лабораторный блок питания своими руками, нужно приобрести подходящие компоненты:

  • Для питания потребуется трансформатор;
  • Несколько транзисторов;
  • Стабилизаторы;
  • Операционный усилитель;
  • Несколько разновидностей диодов;
  • Электролитические конденсаторы – не более 50В;
  • Резисторы разных типов;
  • Резистор Р1;
  • Предохранитель.

Номинал каждой радиодетали необходимо сверять со схемой.


Блок в конечном виде

Для транзисторов необходимо подобрать подходящий радиатор, который сможет рассеивать тепло. Более того, внутри монтируется вентилятор, для охлаждения диодного моста. Еще один устанавливается на внешнем радиаторе, который будет обдувать транзисторы.

Для внутренней начинки желательно подобрать качественный корпус, так как вещь получилась серьезной. Все элементы следует хорошо зафиксировать. На фото лабораторного блока питания, можно заметить, что на замену стрелочным вольтметрам пришли цифрового устройства.

Фото лабораторного блока питания


Двух-полярный лабораторный блок питания своими руками.

Решил пополнить свою лабораторию двух-полярным блоком питания. Промышленные блоки питания с необходимыми мне характеристиками довольно дороги и доступны далеко не каждому радиолюбителю, поэтому решил собрать такой блок питания сам.

За основу своей конструкции, я взял распространенную в интернете схему блока питания. Она обеспечивает регулировку по напряжению 0-30В, ограничение по току в диапазоне 0,002-3А.

Для меня это пока более чем достаточно, поэтому я решил приступить к сборке. Да, кстати схема этого блока питания одно-полярная, так что для обеспечения двух-полярности - придётся собирать две одинаковые.

Сразу скажу, что силовой транзистор Q4 = 2N3055 в данном блоке питания (в этой схеме) не подходит. Он очень часто выходит из строя при коротком замыкании и ток в 3 ампера практически не тянет! Лучше всего и гораздо надёжнее, поменять его на наш родной совковый КТ819 в металле. Можно поставить и КТ827А, этот транзистор составной и в этом случае надобность в транзисторе Q2 отпадает и его, а так же резистор R16 можно не ставить и базу КТ827А подключить на место базы Q2. В принципе можно транзистор и резистор и не удалять (при замене на КТ827А), всё работает и с ними и не возбуждается. Я сразу поставил наши КТ827А и не удалял транзистор Q2 (схему не менял), а заменил его на BD139 (КТ815), теперь и он не греется, правда вместе с ним надо заменить R13 на 33к. Выпрямительные диоды у меня с запасом по мощности. В исходной схеме стоят диоды на ток 3 А, желательно поставить на 5 А (можно и поболее), запас лишним никогда не будет.

Блок питания;

R1 = 2,2 кОм 2W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R20, R21 = 10 кОм 1/4W
R13 = 10 кОм (если используете транзистор BD139 то номинал 33кОм ) R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K триммер
P1, P2 = 10KOhm линейный потенциометр (группы А)
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ полиэстр
C5 = 200нФ полиэстр
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U
D5, D6 = 1N4148
D7, D8 = 5,6V зенеревский
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548, NPN транзистор или BC547
Q2 = 2N2219 NPN транзистор (можно заменить на BD139 )
Q3 = BC557, PNP транзистор или BC327
Q4 = 2N3055 NPN силовой транзистор (заменить на КТ819 или КТ 827А и не ставить Q2, R16)
U1, U2, U3 = TL081, опер. усилитель
D12 = LED диод.

Индикатор;

Резистор = 10K триммер - 2 шт.
Резистор = 3K3 триммер - 3 шт.
Резистор = 100кОм 1/4W
Резистор = 51кОм 1/4W - 3 шт.
Резистор = 6,8кОм 1/4W
Резистор = 5,1кОм 1/4W - 2 шт.
Резистор = 1,5кОм 1/4W
Резистор = 200 Ом 1/4W - 2 шт.
Резистор = 100 Ом 1/4W
Резистор = 56 Ом 1/4W
Диод = 1N4148 - 3 шт.
Диод = 1N4001 - 4 шт. (мост) или любые другие на ток не менее 1 А. (лучше 3 А)
Стабилизатор = 7805 - 2 шт.
Конденсатор = 1000 uF/16V электролитический
Конденсатор = 100нФ полиэстр - 5 шт.
Операционный усилитель МСР502 - 2 шт.
C4 = 100нФ полиэстр
Микроконтроллер ATMega8
LCD 2/16 (контроллер HD44780)



В качестве измерителя (индикаторов), после поисков в просторах "инета", было принято решение использовать схему на микроконтроллере Atmega8, позволяющую реализовать два вольтметра и два амперметра с использованием одного дисплея.

За основу корпуса блока питания, был взят корпус от нерабочего ИБП, который мне подарили друзья из сервисного центра. Ну а дальше немного терпения, и пилил, точил, кромсал. Процесс сборки блока питания запечатлел, и некоторые подробности предоставляю Вашему вниманию.







Да, кстати печатные платы которые я собрал, немного отличаются от печатки, которую я выложил в архиве. Просто после сборки передвинул детали и "положил" на плату конденсатор, это как оказалось, может быть очень полезно для экономии места в корпусе.

Так как, у меня силовые транзисторы прикреплены к радиатору просто через термо-пасту, то потребовалось изолировать их радиаторы друг от друга и от корпуса. Для этого я в авто-магазине прикупил пластмассок, через которые и прикрепил радиаторы к корпусу БП.



Потом конечно же всё проверил и прозвонил, всё оказалось замечательно, ничего, нигде не касается и не коротит.

Для обеспечения температурного режима элементов блока питания, разметил и высверлил в корпусе вентиляционные отверстия для отвода тепла, потом немного покрыл корпус грунтовкой, чтобы выявить какие остались косячки.



Под чутким руководством Кирилла (Kirmav) прошил микроконтроллер и проверил работу индикатора, пока что без калибровок.

Вольтметры работают нормально, амперметры нагрузить было нечем, но скорее всего тоже работают, так как касаюсь пальцами контактов на плате, значения на индикаторе меняются.

День как говорится, закончился для меня очень удачно.



Потом перемотал (вернее домотал) силовой трансформатор. Раньше на нём была одна силовая обмотка на 24 В переменки, домотал ещё одну для второго канала БП, благо - тор, и разбирать ничего не нужно. Так же добавил ещё одну обмотку на 8,5 вольт переменки (примерно 12В постоянки), проводом 0,5 мм. Запитал от этой обмотки индикатор и куллер с регулятором оборотов, всё вроде нормально работает.

Имейте в виду, что для данного блока питания необходим трансформатор с двумя раздельными вторичными обмотками.

Трансформатор с вторичной обмоткой со средней точкой не подойдёт!

Стабилизатор 7805 греется, но в принципе рука держит, значит температура его около 35-40 С, с заменой радиатора думаю все станет лучше.

Регулировка для куллера была выдрана из комповского БП и в общем то работает нормально.

Немного греются диоды на плате индикатора (диодный мост), но думаю не так страшно.



Начал красить корпус, потом уже после того, как его покрасил, только на фотографии заметил, что не прокрасил заднюю часть лицевой панели, а она выглядывает из за корпуса и вид её не очень, придется заново её перекрасить.



Забыл сказать про индикатор, вольтамперметр. Автор этого вольтамперметра, пользователь C@at с сайта c2.at.ua. За основу моего индикатора, была выбрана та схема, где на одном дисплее реализуются два вольтметра и два амперметра.

Сначала я собрал эту схему, но в процессе наладки выявилось то, что данная схема хорошо работает там, где два источника с общим минусом, а вот в двух-полярном блоке питания она совершенно не желает отображать отрицательные величины.

Долго мне пришлось повозиться, прежде чем на появились положительные результаты.

И вот наконец, на основе наработанной другим человеком схемы, нескольких дней "плясок с бубном", работой с протеусом, кучей потраченного времени и нервов, я построил свою, которая способна показывать величину отрицательного плеча. Правда она показывает её в положительной полярности, но это не сильно печально, главное, что она уже работает, и я связался с автором прошивки и попросил его немного изменить прошивку так, чтобы ко второму каналу индикатора (U2 и А2), программа просто пририсовывала бы минусы к выводимым показаниям (надеюсь на его помощь). Но это уже так, просто эстетический момент, главное что схема уже работает.

Прошу знатоков посмотреть схему и оценить номиналы (в амперметре подобраны методом тыка, но погрешность очень мала и меня более чем устраивает).

Потом сделал печатку для индикатора, собрал всё в кучу и проверил. Вольтметры заработали оба и амперметр положительного плеча тоже. Плюс ко всему, сегодня твердо уяснил для себя, что все надо проектировать заранее, а потом уже пилить и вытачивать. Ну да ладно это все мелочи. В общем посидел, покипел и кое что дорисовал, потом проверил отрицательный амперметр - все работает. В связи с этим выкладываю свою печатку вольт-амперметра, может кому и сгодится.

Плату собирал из того, что было под руками. Для шунта взял 45 см. медного провода, диаметром 1мм и намотал его спиралью и впаял в плату. Я конечно понимаю, что медь не лучший материал для шунта (конечно же не в коем случае не прошу следовать моему примеру), но меня пока устраивает, а дальше будет видно.



В печатке которую я вытравил себе - немного "накосячил" с диодным мостом (видно на фото платы), но переделывать было уже лень - вышел из положения перекрестив диоды, после этого печатку поправил (в архиве исправленный вариант). Так же на схеме и на печатке есть разъём для подключения куллера.

Хочу сказать, что после того как схема заработал, я прямо таки полюбил протеус, не плохо оказывается работает, и уяснил для себя, что чтобы добиться желаемого результата, надо расширять свои познания в разных областях, и естественно учиться.



Ещё один вечер пришлось посвятить черчению передней панели. Дело это хоть и не сложное, но все же нудное и требует много терпения.

Для черчения, я в основном использую программу "Компас 3D". Не знаю кому как, но мне почему то проще сначала сделать 3D-модель, а уже потом на её основе изготовить чертёж. Мне как то в свое время стало просто интересно что нибудь в "Компасе" начертить, чтобы соблюсти все размеры и прочее, решил попробовать, и как то это всё затянуло. Я конечно не владею Компасом на ура, но на базовом уровне вполне себе ничего. Ну и помимо Компаса - некоторая доработка передней панели в фотошоп.



Я уже говорил, что попросил автора схемы и прошивки - немного переделать саму прошивку, и вот наконец-то при его поддержке (спасибо ему огромное), удалось изменить приветствие при включении блока питания, а так же дорисовать долгожданный минус в отрицательном плече второго канала индикатора (мелочь, а приятно).У меня это теперь выглядит вот так.


Ну, и специально для тех, кто решит повторить данную конструкцию, он сделал общий вариант приветствия при включении блока питания, который выглядит следующим образом (ну и конечно-же минусы в отрицательном плече).


Специально для тех кому интересно, выкладываю так же в прикреплённом архиве печатку платы контроля работы куллера. Я её перерисовал с готовой платы которая была изъята из комповского бп - должна работать.

P.S. Сам ещё её не собирал.

При испытании собранного БП - решил проверить усилочик, отданный мне в дар. Блок питания успешно справился со своей задачей (обеспечил требуемое напряжение и ток для проверки) правда больше полутора ампер усилок не потреблял в момент проверки.

Для тех, кто решит собирать данный блок питания, скажу, что схема проверенная, повторяемость 100%, при правильной сборке из исправных, проверенных деталей, в налаживании практически не нуждается.

Правда регулировка напряжения и тока раздельная для каждого канала, но это может и лучше с одной стороны.

В архиве установка FUSE (фузов), которые соответствуют работе от внутреннего генератора 4MHz, скрин установки для программы PonyProg.

Удачи в сборке!

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их на форуме.

Архив для статьи



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!