Ещё о технологиях передачи данных по оптике. Волновое мультиплексирование сигналов

На Хабре не так много статей, посвященных технологиям оптических линий связи. Совсем недавно появилась , были статьи о мощных системах DWDM , и краткая статья о применении системы CWDM . Я постараюсь дополнить эти материалы и рассказать Вам вкратце обо всех самых распространенных и доступных в России способах использования ресурса волоконно-оптических линий связи в сетях передачи данных и - совсем немножко - кабельного телевидения.

Начало. Свойства стандартного одномодового волокна G.652
Самое распространенное одномодовое оптическое волокно - это SMF G.652 разных модификаций. Практически наверняка, если у Вас есть волоконно-оптическая линия, она сделана из волокна G.652. У него есть ряд важных характеристик, которые надо иметь в виду.
Удельное (его ещё называют километрическим) затухание - то есть затухание одного километра волокна - зависит от длины волны излучения.

Википедия подсказывает нам следующее распределение:

В реальной жизни сейчас картина получше, в частности удельное затухание в окне 1310нм обычно укладывается в 0.35дБ/км, в окне 1550нм оно порядка 0.22-0.25дБ/км, а так называемый «водяной пик» в районе 1400-1450нм у современных волокон не так сильно выражен, либо вообще отсутствует.

Тем не менее, надо иметь в виду эту картину и само наличие этой зависимости.

Исторически диапазон длин волн, который пропускается оптическим волокном, делится на следующие диапазоны:

O - 1260…1360
E - 1360…1460
S - 1460…1530
C - 1530…1565
L - 1565…1625
U - 1625…1675
(цитирую по той же статье на Википедии).

С приемлемым приближением свойства волокна внутри каждого диапазона можно считать примерно одинаковыми. Водяной пик приходится, как правило, на длинноволновый конец E-диапазона. Ещё будем иметь в виду, что удельное (километрическое) затухание в O-диапазоне примерно в полтора раза выше, чем в S- и в С-диапазоне, удельная хроматическая дисперсия - наоборот, имеет нулевой минимум на длине волны в 1310нм и ненулевая в C-диапазоне.

Простейшие системы уплотнения - двунаправленная передача по одному волокну
Первоначально дуплексная волоконно-оптическая линия связи требовала для работы два волокна: по одному волокну шла передача информации в одну сторону, по другому волокну - в другую. Это удобно своей очевидностью, но довольно расточительно по отношению к использованию ресурса проложенного кабеля.

Поэтому, как только стала позволять технология, стали появляться решения для передачи информации в обе стороны по одному волокну. Названия подобных решений - «одноволоконные трансиверы», «WDM», «bi-directional».

В самых распространенных вариантах используются длины волн 1310 и 1550нм, соответственно из O- и C-диапазона. «В дикой природе» трансиверы на эти длины волн встречаются для линий до 60км. Более «дальнобойные» варианты делаются на другие комбинации - 1490/1550, 1510/1570 и тому подобные варианты с использованием окон прозрачности с мЕньшим удельным затуханием, чем в O-диапазоне.

Кроме вышеперечисленных пар длин волн, возможно встретить комбинацию 1310/1490нм - она используется, если одновременно с данными по этому же волокну передается сигнал кабельного телевидения на длине волны 1550нм; или 1270/1330нм - она используется для передачи 10Гбит/с потоков.

Мультиплексирование данных и кабельного телевидения
Раз уж я затронул тему КТВ, расскажу о нем ещё немного.

Для доставки сигнала кабельного телевидения от головной станции до многоквартирного дома сейчас тоже используется оптика. Для него используется либо длина волны 1310нм - здесь минимальная хроматическая дисперсия, то есть искажение сигнала; либо длина волны 1550нм - здесь минимальное удельное затухание и возможно применение чисто-оптического усиления с использованием EDFA. Если есть необходимость доставки на один дом одновременно и потока данных (интернет) и синала КТВ, нужно либо использовать два отдельных волокна, либо несложное пассивное устройство - фильтр FWDM.

Это обратимое устройство (то есть одно и то же устройсто используется как для мультиплексирования, так и для демультиплексирования потоков) с тремя выводами: под КТВ, одноволоконный трансивер и общий выход (см. схему). Таким образом можно строить сеть PON или Ethernet, используя для передачи данных длины волн 1310/1490, а для КТВ - 1550нм.

CWDM и DWDM
Об уплотнении CWDM уже вкратце рассказал theslim . От себя дополню лишь, что указанные в статье каналы на прием и передачу данных - это чистая условность, мультиплекору абсолютно всё равно, в какую сторону идет сигнал в каждом канале; а оптические приемники - широкополосные, они реагируют на излучение любой длины волны. Из важных моментов, которые надо иметь в виду при проектировании линии CWDM - это различие удельного затухания в волокне на разных каналах (см. первый раздел настоящей статьи), а также различие вносимого самим мультиплексором затухания. Мультиплексор сделан из последовательно соединенных фильтров, и если для первого в цепочке канала затухание может быть меньше одного децибела, то для последнего оно будет ближе к четырем (эти значения приведены для мультиплексора 1х16, на 16 длин волн). Также полезно помнить, что никто не запрещает строить двухволоконные CWDM-линии, просто объединив две пары мультиплексоров в один функциональный блок.
Кроме этого замечу, что вполне возможно часть частотного ресурса выделить под КТВ, передавая по одному волокну до семи дуплексных потоков данных одновременно с аналоговым телевидением.

Система DWDM принципиально ничем не отличается от CWDM, но - как говорится - «дьявол кроется в деталях». Если шаг каналов в CWDM - 20нм, то для DWDM он гораздо уже и измеряется в гигагерцах (самый распространенный сейчас вариант - 100ГГц, или около 0.8нм; также возможен устаревающий вариант с полосой 200ГГЦ и постепенно распространяются более современные - 50 и 25ГГц). Частотный диапазон DWDM лежит в C- и L-диапазоне, по 40 каналов в 100ГГц в каждом. Из этого следует несколько важных свойств DWDM-систем.

Во-первых, они значительно дороже CWDM. Для их использования требуются лазеры со строгим допуском по длине волны и мультиплексоры очень высокой избирательности.

Во-вторых, используемые диапазоны лежат в рабочих зонах оптических усилителей EDFA. Это позволяет строить длинные линии с чисто-оптическим усилением без необходимости оптоэлектронного преобразования сигнала. Именно это свойство привело к тому, что многие при слове «DWDM» сразу представляют себе именно сложные системы монстров телеком-рынка, хотя подобное оборудование можно использовать и в более простых системах.
И в-третих, затухание в C- и L-диапазонах минимально из всего окна прозрачности оптического волокна, что позволяет даже без усилителей строить линии бОльшей длины, чем при использовании CWDM.

Мультиплексоры DWDM - это так же пассивные устройства, как и мультиплексоры CWDM. Для числа каналов до 16 они также устроены из отдельных фильтров, и это довольно простые устройства. Однако мультиплексоры для бОльшего числа каналов делаются по технологии Arrayed Wavelength Grating , крайне чувствительной к изменениям температуры. Поэтому такие мультиплексоры выпускаются либо с электронной схемой термостабилизации (Thermal AWG), либо с применением специальных способов автокомпенсации, не требующих энергии (Athermal AWG). Это делает такие мультиплексоры более дорогими и нежными в эксплуатации.

Практические ограничения в волоконно-оптической связи
В заключение я немного расскажу об ограничениях, с которыми приходится иметь дело при организации связи по оптике.

Как совершенно справедливо отметил товарищ saul , первое ограничение - это оптический бюджет.
Дополню его некоторыми уточнениями.

Если мы говорим о двухволоконных линиях связи, расчет оптического бюджета достаточно сделать для одной длины волны - той, на которой будет вестись передача.

Как только у нас появляется волновое уплотнение (особенно в случае одноволоконных трансиверов или систем CWDM) - сразу надо вспомнить про неравномерность удельного затухания волокна на разных длинах волн и про затухание, вносимое мультиплексорами.

Если мы строим систему с промежуточными ответвлениями на OADM - не забываем посчитать затухание на OADM. Кстати, оно отличается для сквозного канала и выводимых длин волн.

Не забываем оставить несколько децибел эксплуатационного запаса.

Второе, с чем приходится иметь дело - это хроматическая дисперсия. Актуальной она по-настоящему становится для 10Гбит/с линий, и вообще говоря, о ней в первую очередь думает производитель оборудования. Кстати, именно дисперсия придает физический смысл упоминанию километров в маркетинговых названиях трансиверов. Специалисту эксплуатации просто полезно понимать, что есть такое свойство волокна и что кроме затухания сигнала в волокне картину портит ещё и дисперсия. Добавить метки

Волоко́нно-опти́ческая связь - способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем - волоконно-оптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконно-оптических линий многократно превышает пропускную способность всех других систем связи и может измеряться Терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконно-оптическая связь свободна от электромагнитных помех и труднодоступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.

Физическая основа

В основе волоконно-оптической связи лежит явление полного внутреннего отражения электромагнитных волн на границе раздела диэлектриков с разными показателями преломления. Оптическое волокно состоит из двух элементов - сердцевины, являющейся непосредственным световодом, и оболочки. Показатель преломления сердцевины несколько больше показателя преломления оболочки, благодаря чему луч света, испытывая многократные переотражения на границе сердцевина-оболочка, распространяется в сердцевине, не покидая её.

Применение

Волоконно-оптическая связь находит всё более широкое применение во всех областях - от компьютеров и бортовых космических, самолётных и корабельных систем, до систем передачи информации на большие расстояния, например, в настоящее время успешно используется волоконно-оптическая линия связи Западная Европа - Япония, большая часть которой проходит по территории России. Кроме того, увеличивается суммарная протяжённость подводных волоконно-оптических линий связи между континентами.

Волокно в каждый дом (англ. Fiber to the premises, FTTP или Fiber to the home, FTTH ) - термин, используемый телекоммуникационными интернет-провайдерами, для обозначения широкополосных телекоммуникационных систем, базирующихся на проведении волоконного канала и его завершения на территории конечного пользователя путём установки терминального оптического оборудования для предоставления комплекса телекоммуникационных услуг, включающего:

  • высокоскоростной доступ в Интернет;
  • услуги телефонной связи;
  • услуги телевизионного приёма.

Стоимость использования волоконно-оптической технологии уменьшается, что делает данную услугу конкурентоспособной по сравнению с традиционными услугами.

История

Историю систем передачи данных на большие расстояния следует начинать с древности, когда люди использовали дымовые сигналы. С того времени эти системы кардинально улучшились, появились сначала телеграф, затем - коаксиальный кабель. В своем развитии эти системы рано или поздно упирались в фундаментальные ограничения: для электрических систем это явление затухания сигнала на определённом расстоянии, для сверхвысокочастотных (СВЧ) систем - несущая частота. Поэтому продолжались поиски принципиально новых систем, и во второй половине XX века решение было найдено - оказалось, что передача сигнала с помощью света гораздо эффективнее как электрического, так и СВЧ-сигнала.

В 1966 году Као и Хокам из STC Laboratory (STL) представили оптические нити из обычного стекла, которые имели затухание в 1000 дБ/км (в то время как затухание в коаксиальном кабеле составляло всего 5-10 дБ/км) из-за примесей, которые в них содержались и которые, в принципе, можно было удалить.

Существовало две глобальных проблемы при разработке оптических систем передачи данных: источник света и носитель сигнала. Первая разрешилась с изобретением лазеров в 1960 году, вторая - с появлением высококачественных оптических кабелей в 1970 году. Это была разработка Corning Incorporated (англ. ) . Затухание в таких кабелях составляло около 20 дБ/км, что было вполне приемлемым для передачи сигнала в телекоммуникационных системах. В то же время были разработаны достаточно компактные полупроводниковые GaAs-лазеры.

После интенсивных исследований в период с 1975 по 1980 год появилась первая коммерческая волоконно-оптическая система, оперировавшая светом с длиной волны 0,8 мкм и использовавшая полупроводниковый лазер на основе арсенида галлия (GaAs). Битрейт систем первого поколения составлял 45 Мбит/с, расстояние между повторителями - 10 км.

22 апреля 1977 года в Лонг-Бич, штат Калифорния, компания General Telephone and Electronics впервые использовала оптический канал для передачи телефонного трафика на скорости 6 Мбит/с.

Второе поколение волоконно-оптических систем было разработано для коммерческого использования в начале 1980-х. Они оперировали светом с длиной волны 1,3 мкм от InGaAsP-лазеров. Однако такие системы всё ещё были ограниченны из-за рассеивания, возникающего в канале. Однако уже в 1987 году эти системы работали на скорости до 1,7 Гбит/с при расстоянии между повторителями 50 км.

Основные определения

Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Структура оптоволоконного кабеля очень проста и похожа на структуру коаксиального электрического кабеля , только вместо центрального медного провода здесь используется тонкое (диаметром порядка 1-10 мкм) стекловолокно, а вместо внутренней изоляции – стеклянная или пластиковая оболочка, не позволяющая свету выходить за пределы стекловолокна. Мы имеем дело с режимом, так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами преломления (у стеклянной оболочки коэффициент преломления значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, так как экранирование от внешних электромагнитных помех здесь не требуется, однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может объединять под одной оболочкой несколько оптоволоконных кабелей).

Волоконная оптика – раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Оптоволоконная связь – связь, построенная на базе оптоволоконных кабелей. Широко применяется также сокращение ВОЛС (волоконно-оптическая линия связи). Используется в различных сферах человеческой деятельности, начиная от вычислительных систем и заканчивая структурами для связи на больших расстояниях. Является сегодня наиболее популярным и эффективным методом для обеспечения телекоммуникационных услуг.

Материалы

Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5.

В настоящее время развивается применение пластиковых оптических волокон (Plastic optical fibers).

В качестве источников излучения света в волоконно-оптических кабелях применяются:

  1. светодиоды, или светоизлучающие диоды (Light Emmited Diode, LED);
  2. полупроводниковые лазеры, или лазерные диоды (Laser Diode).

Для одномодовых кабелей применяются только лазерные диоды, так как при таком малом диаметре оптического волокна световой поток, создаваемый светодиодом, невозможно без больших потерь направить в волокно – он имеет чересчур широкую диаграмму направленности излучения, в то время как лазерный диод – узкую. Поэтому более дешевые светодиодные излучатели используются только для многомодовых кабелей.

Волоконная оптика хоть и является повсеместно используемым и популярным средством обеспечения связи, сама технология проста и разработана достаточно давно. Эксперимент с переменой направления светового пучка путем преломления был продемонстрирован Даниелем Колладоном (Daniel Colladon) и Жаком Бабинеттом (Jacques Babinet) еще в 1840 году. Спустя несколько лет Джон Тиндалл (John Tyndall) использовал этот эксперимент на своих публичных лекциях в Лондоне, и уже в 1870 году выпустил труд, посвященный природе света. Практическое применение технологии нашлось лишь в ХХ веке. В 20-х годах прошлого столетия экспериментаторами Кларенсом Хаснеллом (Clarence Hasnell) и Джоном Бердом (John Berd) была продемонстрирована возможность передачи изображения через оптические трубки. Этот принцип использовался Генрихом Ламмом (Heinrich Lamm) для медицинского обследования пациентов. Только в 1952 году индийский физик Нариндер Сингх Капани (Narinder Singh Kapany) провел серию собственных экспериментов, которые и привели к изобретению оптоволокна. Фактически им был создан тот самый жгут из стеклянных нитей, причем оболочка и сердцевина были сделаны из волокон с разными показателями преломления. Оболочка фактически служила зеркалом, а сердцевина была более прозрачной – так удалось решить проблему быстрого рассеивания. Если ранее луч не доходил да конца оптической нити, и невозможно было использовать такое средство передачи на длительных расстояниях, то теперь проблема была решена. Нариндер Капани к 1956 году усовершенствовал технологию. Связка гибких стеклянных прутов передавала изображение практически без потерь и искажений.

Изобретение в 1970 году специалистами компании Corning оптоволокна, позволившего без ретрансляторов продублировать на то же расстояние систему передачи данных телефонного сигнала по медному проводу , принято считать переломным моментом в истории развития оптоволоконных технологий. Разработчикам удалось создать проводник, который способен сохранять не менее одного процента мощности оптического сигнала на расстоянии одного километра. По нынешним меркам это достаточно скромное достижение, а тогда – необходимое условие для того, чтобы развивать новый вид проводной связи.

Первоначально оптоволокно было многофазным, то есть могло передавать сразу сотни световых фаз. Причём повышенный диаметр сердцевины волокна позволял использовать недорогие оптические передатчики и коннекторы. Значительно позже стали применять волокно большей производительности, по которому можно было транслировать в оптической среде лишь одну фазу. С внедрением однофазного волокна целостность сигнала могла сохраняться на большем расстоянии, что способствовало передаче немалых объёмов информации.

Самым востребованным сегодня является однофазное волокно с нулевым смещением длины волны. Начиная с 1983 года оно занимает ведущее положение среди продуктов оптоволоконной индустрии, доказав свою работоспособность на десятках миллионов километров.

Классификация

Выделяют несколько классов оптоволокон по особенностям структуры и принципу действия:

  1. Одномодовые оптоволокна
  2. Многомодовые оптоволокна
  3. Оптоволокна с градиентным показателем преломления

Оптоволокна со ступенчатым профилем распределения показателей преломления.

Профиль показателя преломления различных типов оптических волокон: многомодовое волокно со ступенчаты изменением показателя преломления (а); многомодовое волокно с плавным изменением показателя преломления (6); одномодовое волокно (в).

Все оптические волокна делятся на две основные группы: многомодовые MMF (multi mode fiber) и одномодовые SMF (single mode fiber).

Понятие «мода», описывает режим распространения световых лучей во внутреннем сердечнике кабеля. В одномодовом кабеле используется центральный проводник очень малого диаметра, соизмеримого c длиной волны света – от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Изготовление сверхтонких качественных волокон для одномодового кабеля представляет сложный технологический процесс, что делает одномодовый кабель достаточно дорогим. Кроме того, в волокно такого маленького диаметра достаточно сложно направить пучок света, не потерян при этом значительную часть его энергии. В многомодовых кабелях используются более широкие внутренние сердечники, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62,5/125 мкм и 50/125 мкм, где 62,5 мкм или 50 мкм – диаметр центрального проводника, а 125 мкм – диаметр внешнего проводника.

Многомодовые волокна

Многомодовые волокна подразделяются на ступенчатые (step index multi mode fiber) и градиентные(graded index multi mode fiber).

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается. Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки – 125 мкм (это иногда обозначается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков по сравнению с одномодовым кабелем. Длина волны света в многомодовом кабеле равна 0,85 мкм. Допустимая длина кабеля достигает 2-5 км. В настоящее время многомодовый кабель – основной тип оптоволоконного кабеля, так как он дешевле и доступнее.

Многомодовые волокна со ступенчатым профилем

Первые волокна для передачи данных были многомодовыми со ступенчатым профилем показателя преломления. Для распространения света благодаря полному внутреннему отражению, необходимо иметь показатель преломления стекла сердцевины n1 , немного большим, чем показатель преломления стекла оболочки n2 . На границе раздела двух стеклянных сред должно выполняться условие: n1 > n2 . Если показатель преломления сердцевины оптического волокна n1 одинаков по всему поперечному сечению, то тогда говорят, что волокно имеет ступенчатый профиль. Такой волоконный световод является многомодовым. Импульс света, распространяющийся в нем, состоит из многих составляющих, направляемых в отдельных модах световода. Каждая из этих мод возбуждается на входе волокна под своим определённым углом ввода в световод и направляется по нему вдоль сердцевины, проходя с различными траекториями движения луча. Каждая мода проходит разное расстояние оптического пути и поэтому проходит всю длину световода за разное время. При этом, если мы подадим на вход световода короткий (прямоугольный) импульс света, то на выходе многомодового световода получим «размытый» по времени импульс. Эти искажения, обусловленные дисперсией времени задержки отдельных мод, называются модовой дисперсией.

Многомодовые волокна с градиентным профилем

В многомодовом оптическом волокне со ступенчатом профилем, моды распространяются по оптическим путям разной длины и поэтому приходят к концу световода в разное время. Эта дисперсия может быть значительно уменьшена, если показатель преломления стекла сердцевины уменьшается параболически от максимальной величины n1 у оси световода, до величины показателя преломления n2 на поверхности границы раздела с оболочкой. Оптический волновод с таким профилем, (когда показатель преломления плавно изменяется) называется градиентным волоконным световодом. Лучи света проходят по такому волокну по волно- или винтообразным спиралям. Чем дальше отклоняется луч света от оси световода, тем сильнее он заворачивается обратно к оси. При этом, так как показатель преломления от оси к краю сердцевины уменьшается, то увеличивается скорость распространения света в среде. Благодаря этому более «длинные» оптические пути компенсируются меньшим временем прохождения. В результате различие временных задержек различных лучей почти полностью исчезает.

Одномодовые волокна

Одномодовые волокна подразделяются на ступенчатые одномодовые волокна (step index single mode fiber) или стандартные волокна SF (standard fiber), на волокна со смещенной дисперсией DSF (dispersion-shifted single mode fiber), и на волокна с ненулевой смещенной дисперсией NZDSF (non-zero dispersion-shifted single mode fiber).

В одномодовом кабеле практически все лучи проходят один и тот же путь, в результате чего все они достигают приемника одновременно, и форма сигнала практически не искажается. Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает свет только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные приемопередатчики, использующие свет исключительно с требуемой длиной волны. Такие приемопередатчики пока еще сравнительно дороги и не слишком долговечны. Однако в перспективе одномодовый кабель должен стать основным благодаря своим прекрасным характеристикам.

Волокна со ступенчатым профилем

Модовая дисперсия в оптическом волокне может быть исключена, если структурные параметры ступенчатого световода подобрать таким образом, что в нём будет направляться только одна мода, а именно – фундаментальная (основная) мода. Однако и основная мода также уширяется во времени по мере её прохождения по такому световоду. Это явление называется хроматической дисперсией. Она является свойством материала, поэтому как правило, имеет место в любом оптическом световоде, но в диапазоне длин волн от 1200 до 1600 нм она относительно мала или отсутствует. Для изготовления ступенчатого волоконного световода с малым затуханием, который направляет только фундаментальную моду в диапазоне длин волн более 1200 нм диаметр поля моды должен быть уменьшен до 8-10 мкм. Такой ступенчатый волоконный световод называется стандартным одномодовым оптическим волокном.

Волокна с многоступенчатым профилем

Профиль показателя преломления обычного одномодового световода имеет ступенчатый профиль. Для такой структуры профиля сумма дисперсии материала в волноводной дисперсии при длине волны около 1300 нм равна нулю. Для современных устройств передачи данных по оптическому волокну, использующих длины волн 1550 нм или одновременную передачу сигналов на нескольких длинах волн, желательно иметь нулевую дисперсию и при других длинах волн. А для этого необходимо изменить волновую дисперсию и, следовательно, структуру профиля преломления волоконного световода. Это приводит к многоступенчатому или сегментному профилям показателя преломления. Используя эти профили, можно производить волоконные световоды, у которых длина волны с нулевой дисперсией сдвинута до 1550 нм (волокно со смещённой дисперсией) или величины дисперсии очень малы во всём диапазоне волн от 1300 нм до 1550 нм (волокно со сглаженной или компенсированной дисперсией).

Диаметр сердцевины одномодовых волокон 7-9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми.

Элементы волоконно-оптической линии

  1. Оптический приёмник

Оптические приёмники обнаруживают сигналы, передаваемые по волоконно-оптическому кабелю, и преобразовывают его в электрические сигналы, которые затем усиливают и далее восстанавливают их форму, а также синхросигналы. В зависимости от скорости передачи и системной специфики устройства, поток данных может быть преобразован из последовательного вида в параллельный.

  1. Оптический передатчик

Оптический передатчик в волоконно-оптической системе преобразовывает электрическую последовательность данных, поставляемых компонентами системы, в оптический поток данных.

  1. Предусилитель

Усилитель преобразовывает асимметричный ток от фотодиодного датчика в асимметричное напряжение, которое усиливается и преобразуется в дифференциальный сигнал.

  1. Микросхема синхронизации и восстановления данных

Эта микросхема должна восстанавливать синхросигналы от полученного потока данных и их тактирование. Схема фазовой автоподстройки частоты, необходимая для восстановления синхроимпульсов, также полностью интегрирована в микросхему синхронизации и не требует внешних контрольных синхроимпульсов.

  1. Оптический кабель , состоящий из оптических волокон, находящихся под общей защитной оболочкой.

Волоконно-оптические приёмопередатчики

Чтобы передать данные через оптические каналы, сигналы должны быть преобразованы из электрического вида в оптический, переданы по линии связи и затем в приёмнике преобразованы обратно в электрический вид . Эти преобразования происходят в устройстве приёмопередатчика, который содержит электронные блоки наряду с оптическими компонентами.

Широко используемый в технике передач мультиплексор с разделением времени позволяет увеличить скорость передачи до 10 Гб/сек. Современные быстродействующие волоконно-оптические системы предлагают следующие стандарты скорости передач.

Стандарт SONET

Стандарт SDH

Скорость передачи

51,84 Мб/сек

155,52 Мб/сек

622,08 Мб/сек

2,4883 Гб/сек

9,9533 Гб/сек

Новые методы мультиплексного разделения длины волны или спектральное уплотнение дают возможность увеличить плотность передачи данных. Для этого многочисленные мультиплексные потоки информации посылаются по одному оптоволоконному каналу с использованием передачи каждого потока на разных длинах волны. Электронные компоненты в WDM-приемнике и передатчике отличаются по сравнению с теми, которые используются в системе с временным разделением.

Преимущества оптоволоконного типа связи

  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей. Это означает, что по оптоволоконной линии можно передавать информацию со скоростью порядка 1 Тбит/с;
  2. Очень малое затухание светового сигнала в волокне, что позволяет строить волоконно-оптические линии связи длиной до 100 км и более без регенерации сигналов;
  3. Устойчивость к электромагнитным помехам со стороны окружающих медных кабельных систем, (линии электропередачи, электродвигательные установки, т.д.) и погодных условий;
  4. Защита от несанкционированного доступа. Информацию, передающуюся по волоконно-оптическим линиям связи, практически нельзя перехватить неразрушающим кабель способом;
  5. Электробезопасность. Являясь, по сути, диэлектриком, оптическое волокно повышает взрыво- и пожаробезопасность сети, что особенно актуально на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;
  6. Долговечность ВОЛС – срок службы волоконно-оптических линий связи составляет не менее 25 лет.

Недостатки оптоволоконного типа связи

  1. Относительно высокая стоимость активных элементов линии, преобразующих электрические сигналы в свет и свет в электрические сигналы;
  2. Относительно высокая стоимость сварки оптического волокна. Для этого требуется прецизионное, а потому дорогое, технологическое оборудование. Как следствие, при обрыве оптического кабеля затраты на восстановление ВОЛС выше, чем при работе с медными кабелями.

Применение линий оптоволоконной связи

Оптоволокно активно применяется для построения городских, региональных и федеральных сетей связи, а также для устройства соединительных линий между городскими АТС. Это связано с быстротой, надёжностью и высокой пропускной способностью волоконных сетей. Также посредством применения оптоволоконных каналов существуют кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы . В перспективе в оптоволоконных сетях предполагается использовать преобразование речевых сигналов в оптические.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Санкт-Петербургский национальный исследовательский университет

информационных технологий , механики и оптики

Факультет ИКВО Кафедра МИПиУ

Направление (специальность) 090900 «Информационная безопасность» Группа 2750

Квалификация (степень) бакалавр

По курсу «Концепции современного естествознания»

Волоконно-оптическая связь.

Выполнил:

Студент 2-го курса

Богопольская Е.А.

к.т.н., доцент каф.ПБКС

Комарова И.Э.

Г.С-Петербург

1. Основные понятия………………………………1

2.Материалы………………………………..............2

3.История…………………………………………...2

4.Классификация…………………………………...3

5.Элементы волоконно-оптических линий………7

6.Преимущества оптоволоконного типа связи…...9

7.Недостатки оптоволоконного типа связи...…….9

8.Применение линий оптоволоконной связи…….9



Оптическая связь

связь посредством электромагнитных колебаний оптического диапазона (как правило, 10 13 -10 15 гц ). Использование света для простейших (малоинформативных) систем связи имеет давнюю историю (см., например, Оптический телеграф). С появлением Лазер ов возникла возможность перенести в оптический диапазон разнообразные средства и принципы получения, обработки и передачи информации, разработанные для радиодиапазона. Огромный рост объёмов передаваемой информации и вместе с тем практически полное исчерпание ёмкости радиодиапазона придали проблеме освоения оптического диапазона в целях связи исключительную важность. Основные преимущества О. с. по сравнению со связью на радиочастотах, определяемые высоким значением оптической частоты (малой длиной волны): большая ширина полосы частот для передачи информации, в 10 4 раз превышающая полосу частот всего радиодиапазона, и высокая направленность излучения при входных и выходных Апертура х, значительно меньших апертур антенн в радиодиапазоне. Последнее достоинство О. с. позволяет применять в передатчиках оптических систем связи генераторы с относительно малой мощностью и обеспечивает повышенную помехозащищенность и скрытность связи.

Структурно линия О. с. аналогична линии радиосвязи (См. Радиосвязь). Для модуляции излучения оптического генератора либо управляют процессом генерации, воздействуя на источник питания или на оптический резонатор генератора, либо применяют дополнительные внешние устройства, изменяющие выходное излучение по требуемому закону (см. Модуляция света). При помощи выходного оптического узла излучение формируется в малорасходящийся луч, достигающий входного оптического узла, который фокусирует его на активную поверхность фотопреобразователя. С выхода последнего электрические сигналы поступают в узлы обработки информации. Выбор несущей частоты в системе О. с. - сложная комплексная задача, в которой должны учитываться условия распространения оптического излучения в среде передачи, технические характеристики лазеров, модуляторов, приёмников света (См. Приёмники света), оптических узлов. В системах О. с. находят применение два способа приёма сигналов - прямое детектирование и гетеродинный приём. Гетеродинный метод приёма, обладая рядом преимуществ, главные из которых - повышенная чувствительность и дискриминация фоновых помех, в техническом отношении много сложнее прямого детектирования. Серьёзным недостатком этого метода является существенная зависимость величины сигнала на выходе фотоприёмника от характеристик трассы.

В зависимости от дальности действия системы О. с. можно разделить на следующие основные классы: открытые наземные системы ближнего радиуса действия, использующие прохождение излучения в приземных слоях атмосферы; наземные системы, использующие закрытые световодные каналы (волоконные Световод ы, светонаправляющие зеркально-линзовые структуры) для высокоинформативной связи между АТС, ЭВМ, для междугородной связи; высокоинформативные линии связи (главным образом ретрансляционные), действующие в ближнем космическом пространстве; дальние космические линии связи.

В СССР и за рубежом накоплен определённый опыт работы с открытыми линиями О. с. в приземных слоях атмосферы с использованием лазеров. Показано, что сильная зависимость надёжности связи от атмосферных условий (определяющих оптическую видимость) на трассе распространения ограничивает применение открытых линий О. с. относительно малыми расстояниями (несколько километров) и лишь для дублирования существующих кабельных линий связи, использования в малоинформативных передвижных системах, системах сигнализации и т.п. Однако открытые линии О. с. перспективны как сродство связи между Землёй и космосом. Например, с помощью лазерного луча можно передавать информацию на расстояние Оптическая связь10 8 км со скоростью до 10 5 бит в сек , в то время как микроволновая техника при этих расстояниях обеспечивает скорость передачи только Оптическая связь10 бит в сек . В принципе, О. с. в космосе возможна на расстояниях до 10 10 км , что немыслимо для иных систем связи; однако построение космических линий О. с. технически весьма сложно.

В земных условиях наиболее перспективны системы О. с., использующие закрытые световодные структуры. В 1974 показана возможность изготовления стеклянных световодов с затуханием передаваемых сигналов не более нескольких дб /км . При современном уровне техники, используя полупроводниковые диодные излучатели, работающие как в лазерном (когерентном), так и в некогерентном режимах, кабели со световолоконными жилами и полупроводниковые приёмники, можно построить магистрали связи на тысячи телефонных каналов с ретрансляторами, располагаемыми на расстояниях около 10 км друг от друга. Интенсивные работы по созданию лазерных излучателей со сроками службы Оптическая связь10-100 тыс. ч , разработка широкополосных высокочувствительных приёмных устройств, более эффективных световодных структур и технологии изготовления световодов большой протяжённости, по-видимому, сделают О. с. конкурентоспособной со связью по существующим кабельным и релейным магистралям уже в ближайшем десятилетии. Можно ожидать, что О. с. займёт важное место в общегосударственной сети связи наряду с др. средствами. В перспективе системы О. с. со световодными линиями по своим информационным возможностям и стоимости на единицу информации могут стать основным видом магистральной и внутригородской связи.

Лит.: Чернышев В. Н., Шереметьев А. Г., Кобзев В. В., Лазеры в системах связи, М., ; Пратт В. К., Лазерные системы связи, пер. с англ., М., 1972; Применение лазеров, пер. с англ., М., 1974.

А. В. Иевский, М. Ф. Стельмах.


Большая советская энциклопедия . - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Оптическая связь" в других словарях:

    Передача информации с помощью света. Простейшие (малоинформативные) виды О. с. использовались с кон. 18 в. (напр., семафорная азбука). С появлением лазеров возникла возможность перенести в оптич. диапазон средства и принципы получения, обработки… … Физическая энциклопедия

    ОПТИЧЕСКАЯ СВЯЗЬ СМ - Связь оптическая … Большая политехническая энциклопедия

    Большой Энциклопедический словарь

    оптическая связь - См. optical communications. Различие в употреблении двух терминов состоит в следующем: понятие optical чаще всего относится к оборудованию оптической связи, а термин lightwave к средствам обработки оптических сигналов. [Л.М. Невдяев.… … Справочник технического переводчика

    Связь между двумя или несколькими пунктами посредством света, световых сигналов. Использование света для передачи простейших сообщений имеет давнюю историю. С древнейших времён огни костров предупреждали о приближении врагов, указывали путь… … Энциклопедия техники

    Связь посредством электромагнитных колебаний оптического диапазона (1013 1015 Гц), обычно с применением лазеров. Системы оптической связи структурно подобны системам радиосвязи. Перспективны линии оптической связи космические открытые и наземные… … Энциклопедический словарь

    оптическая связь - optinis ryšys statusas T sritis automatika atitikmenys: angl. optical communication vok. optische Kopplung, f; optische Nachrichtenübertragung, f rus. оптическая связь, f pranc. communication optique, m … Automatikos terminų žodynas

    Связь между двумя или неск. пунктами посредством электромагнитных волн оптич. диапазона. Емкость оптич. канала связи значительно превышает ёмкость радиочастотных каналов, т. к. оптическое излучение имеет частоты порядка 10 1000 ТГц (1012 1015 Гц) … Большой энциклопедический политехнический словарь

    Волоконно оптическая связь вид проводной электросвязи, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем волоконно… … Википедия

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность , а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.



Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ

Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками , пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством , а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.

МИР ЦИФРЫ И СТЕКЛА

ВВЕДЕНИЕ

У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания

За последнюю четверть века оптоволоконная связь стала широко распространенным методом передачи видео- и аудиосигнала, других аналоговых сигналов и цифровых данных. У оптоволоконной связи много хорошо известных преимуществ над витой парой и коаксиальными кабелями, например, невосприимчивость к электрическим помехам и непревзойденно широкая полоса пропускания. По этим и многим другим причинам волоконно-оптические системы передачи информации все глубже проникают в самые разные области информационных технологий.

Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят

Однако, несмотря на эти преимущества, в оптоволоконных системах до недавнего времени использовались те же самые аналоговые технологии передачи сигнала, что и в их медных предшественниках. Сейчас, когда появилось новое поколение аппаратуры, основанное исключительно на цифровых методах обработки сигналов, оптоволоконная связь вновь выводит телекоммуникации на совершенно новый уровень. Цифровые системы обеспечивают очень высокую производительность, гибкость и надежность, и стоят при этом не больше, чем аналоговые решения, на смену которым они приходят.

В этом пособии рассматривается техника цифровой передачи сигнала по оптоволоконным кабелям и ее экономические и технологические преимущества.

АНАЛОГОВАЯ ПЕРЕДАЧА ПО ОПТОВОЛОКНУ

Чтобы в должной мере оценить преимущества цифровых технологий, давайте вначале рассмотрим традиционные методы передачи аналоговых сигналов по оптоволокну. Для передачи аналоговых сигналов используют амплитудную (АМ) и частотную (ЧМ) модуляцию. В обоих случаях на вход оптического передатчика поступает низкочастотный аналоговый аудио- и видеосигнал или данные, которые преобразуются в оптический сигнал. Делается это по-разному.

В системах с амплитудной модуляцией оптический сигнал – это световой поток с интенсивностью, меняющейся в соответствии с изменениями входного электрического сигнала. В качестве источника света используются либо светодиоды, либо лазеры. К сожалению, и те и другие нелинейны, то есть в полном диапазоне яркостей от отсутствия излучения до максимального значения не соблюдается пропорциональность между входным сигналом и интенсивностью света. Тем не менее, именно такой способ управления используется в системах с амплитудной модуляцией. В результате возникают различные искажения передаваемого сигнала:

  • снижение отношения сигнал/шум по мере роста длины кабеля;
  • нелинейное дифференциальное усиление и фазовые ошибки при передаче видеосигнала;
  • ограничение динамического диапазона аудиосигнала.

Для улучшения качества работы оптоволоконных систем передачи сигнала было предложено использовать частотную модуляцию, при которой источник света всегда либо выключен полностью, либо включен на полную мощность, а частота следования импульсов изменяется в соответствии с амплитудой входного сигнала. Для тех, кто знаком с частотной модуляцией сигналов в радиотехнике, применение здесь этого термина может показаться необоснованным, поскольку в контексте оптоволоконных систем это воспринимается как метод управления частотой самого светового излучения. Это не так, и в самом деле более правильно было бы использовать термин «фазоимпульсная модуляция» (ФИМ), но в области оптоволоконной техники устоялась именно такая терминология. Следует всегда помнить, что слово «частотная» в названии метода модуляции означает частоту следования импульсов, а не частоту несущих их световых волн.

При амплитудной модуляции уровень входного сигнала представляется интенсивностью светового луча

При частотной модуляции уровень входного сигнала представляется частотой следования световых импульсов
Рис. 1. Сравнение амплитудной и частотной модуляции

Хотя частотная модуляция устраняет многие проблемы управления яркостью излучателя, свойственные системам с АМ, у нее есть и свои трудности. Одна из них – известные в ЧМ-системах перекрестные помехи. Они наблюдаются, в частности, при передаче нескольких сигналов с частотной модуляцией по одному оптоволокну, например, при использовании мультиплексора. Перекрестные помехи возникают в передатчике или приемнике как результат нестабильности настройки важных схем фильтрации сигнала, предназначенных для разделения несущих частот. Если фильтры настроены некачественно, то частотно-модулированные несущие взаимодействуют друг с другом и искажаются. Инженеры, специализирующиеся на оптоволоконных системах, могут создать ЧМ-системы, в которых вероятность возникновения перекрестных помех сведена к минимуму, но любое усовершенствование конструкции влечет за собой возрастание стоимости приборов.

Еще один тип искажений называется интермодуляцией. Как и перекрестные помехи, интермодуляция возникает в системах, предназначенных для передачи сразу нескольких сигналов по одному оптоволокну. Интермодуляционные искажения возникают в передатчике чаще всего как результат нелинейности в цепях, общих для различных ЧМ-несущих. Как следствие, до объединения нескольких несущих в один оптический сигнал они действуют друг на друга, снижая точность передачи исходного сигнала.

ЦИФРОВЫЕ СИСТЕМЫ

Как и в аналоговых системах, на передатчики цифровых систем поступает низкочастотный аналоговый аудио- и видеосигнал или цифровые данные, которые преобразуются в оптический сигнал. Приемник получает оптический сигнал и выдает электрический сигнал исходного формата. Различие состоит в том, как сигналы обрабатываются и передаются от передатчика к приемнику.


Рис. 2. Цифровая система передачи аналогового сигнала

В чисто цифровых системах входной низкочастотный сигнал сразу поступает на аналого-цифровой преобразователь, который входит в состав передатчика. Там сигнал преобразуется в последовательность логических уровней – нулей и единиц, называемую цифровым потоком. Если передатчик многоканальный, то есть рассчитан на работу с несколькими сигналами, то несколько цифровых потоков объединяются в один, и он управляет включением и выключением одного излучателя, которое происходит с очень высокой частотой.

На приемном конце происходит обратное преобразование сигнала. Из комбинированного цифрового потока выделяются индивидуальные потоки, соответствующие отдельным передаваемым сигналам. Они поступают на цифро-аналоговые преобразователи, после чего выдаются на выходы в исходном формате (рис. 2).

Чисто цифровая передача сигнала имеет массу преимуществ над традиционными АМ- и ЧМ-системами – от универсальности и более качественного сигнала до меньшей стоимости монтажа. Давайте рассмотрим некоторые из преимуществ более подробно и попутно обсудим выгодные как для установщика систем, так и для их пользователя экономические показатели.

ТОЧНОСТЬ ПЕРЕДАЧИ СИГНАЛА

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи. ЧМ-системы работают несколько лучше: в них качество сигнала хотя и снижается, но в не очень длинных линиях остается примерно постоянным, резко снижаясь лишь при достижении некоторой предельной длины. Только в полностью цифровых системах гарантируется сохранение качества сигнала при передаче по оптоволоконной линии связи независимо от расстояния между передатчиком и приемником и количества передаваемых каналов (конечно, в пределах возможностей системы).

В аналоговых системах с амплитудной модуляцией сигнал теряет качество пропорционально пути, пройденному по оптоволокну. Этот факт в сочетании с тем, что АМ-системы работают только с многомодовыми световодами, ограничивает применение таких систем сравнительно небольшими расстояниями передачи

Точность воспроизведения передаваемого сигнала представляет значительную проблему при разработке систем для организации нескольких каналов передачи по одному оптоволокну (мультиплексоров). Например, в аналоговой системе, рассчитанной на передачу четырех каналов видео- или аудиосигнала, для того, чтобы уложиться в полосу пропускания системы, приходится ограничивать полосу, отводимую отдельным каналам. В цифровых системах не приходится идти на такой компромисс: по одному световоду можно передавать один, четыре и даже десять сигналов без снижения качества.

БОЛЕЕ ВЫСОКОЕ КАЧЕСТВО ПЕРЕДАЧИ СИГНАЛОВ


Рис. 3

Передача аналоговых сигналов в цифровой форме обеспечивает более высокое качество, чем чисто аналоговая. Искажение сигнала при таком способе передачи может происходить только при аналого-цифровом и обратном цифро-аналоговом преобразовании. Хотя никакое преобразование не идеально, современные технологии настолько совершенны, что даже недорогие АЦП и ЦАП обеспечивают гораздо более высокое качество видео- и аудиосигнала, чем можно достичь в аналоговых АМ- и ЧМ-системах. Это легко видно из сравнения отношений сигнал-шум и нелинейных искажений (дифференциальной фазы и дифференциального усиления) цифровых и аналоговых систем, предназначенных для передачи сигналов одного формата по оптоволокну одинакового типа на одной и той же длине волны.

Цифровые технологии предоставляют инженерам невиданную ранее гибкость при создании оптоволоконных систем. Теперь для различных рынков, задач и бюджетов легко подобрать нужный уровень производительности. Например, меняя разрядность аналого-цифрового преобразователя, можно влиять на необходимую для передачи сигнала полосу пропускания системы, и, как следствие, общую производительность и стоимость. При этом другие свойства цифровой системы – отсутствие искажений и независимость качества работы от длины линии – сохраняются вплоть до максимального расстояния передачи. При разработке аналоговых систем инженеры всегда находятся в клещах между стоимостью системы и ее техническими характеристиками, пытаясь сбалансировать их без ущерба для критически важных параметров передаваемых сигналов. В цифровых системах масштабирование систем и управление их производительностью и стоимостью – гораздо менее сложная задача.

НЕОГРАНИЧЕННОЕ РАССТОЯНИЕ ПЕРЕДАЧИ

Другое преимущество цифровых систем над аналоговыми предшественниками – их способность восстанавливать сигнал, не внося в него дополнительных искажений. Такое восстановление выполняется в специальном приборе, называемом репитером или линейным усилителем.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ- систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

По мере прохождения света по оптоволокну его интенсивность постепенно снижается и, в конце концов, становится недостаточной для детектирования. Если же немного не доходя до того места, где свет становится слишком слабым, установить линейный усилитель, то он усилит сигнал до его исходной мощности, и его можно будет передавать дальше на такое же расстояние. Важно отметить, что в линейном усилителе восстанавливается цифровой поток, что не оказывает никакого влияния на качество закодированного в нем аналогового видео- или аудиосигнала независимо от того, сколько раз выполнялось восстановление в линейных усилителях на пути следования сигнала по длинной оптоволоконной линии.

Преимущество, предоставляемое цифровыми системами, очевидно. В них сигнал может быть передан на расстояния, значительно превосходящие возможности АМ- и ЧМ-систем, при этом разработчик может быть уверен, что принятый сигнал точно совпадает с переданным и соответствует требованиям технического задания.

МЕНЬШАЯ СТОИМОСТЬ

Оценивая те многочисленные преимущества, которыми обладают цифровые оптоволоконные системы, можно предположить, что они должны стоить гораздо дороже традиционных аналоговых систем. Однако это не так, и пользователи цифровых систем, напротив, экономят свои деньги.

На конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы

Стоимость цифровых компонентов существенно снизилась за последние годы, и изготовители оборудования смогли разработать и предложить к продаже изделия, которые стоят так же или даже дешевле, как и аналоговые приборы предыдущего поколения. Конечно, некоторые фирмы хотят убедить общественность в том, что превосходное качество цифровых систем можно получить только за дополнительную плату, но на деле они просто решили не делить сэкономленное со своими клиентами. Но на конкурентном рынке всегда найдется производитель, предлагающий цифровое качество по цене аналоговой системы.

Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем

На стоимость установки и эксплуатации оптоволоконной системы влияют и другие факторы. Наиболее очевидный из них - затраты на кабель. Цифровые системы позволяют по одному кабелю передавать больший объем информации, тем самым снижая потребность в нем. Преимущество особенно хорошо заметно там, где надо одновременно передавать сигналы различных типов, например, видео и звук или звук и данные. Без особых проблем инженеры смогут сконструировать цифровую систему с приемлемой стоимостью, в которой по одному оптоволокну будут передаваться сигналы различных типов, например, два канала видео и четыре канала звука. При использовании аналоговых технологий, скорее всего, пришлось бы делать две отдельные системы, или, как минимум, использовать два раздельных кабеля для передачи аудио- и видеосигналов.

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны

Даже в случаях, когда по одному оптоволокну надо передавать несколько однотипных сигналов, цифровые системы предпочтительнее, поскольку работают более надежно и обеспечивают более высокое качество сигнала. Например, в цифровом видеомультиплексоре можно передать десять каналов с одинаково высоким качеством, а в аналоговой системе такое вообще невозможно.

Следует учитывать и неизбежные за годы эксплуатации оптоволоконных систем расходы на техническое обслуживание и ремонт. И здесь преимущество за цифровыми системами. Во-первых, для них не требуется первоначальная настройка после монтажа – передатчик и приемник просто соединяются оптоволоконным кабелем, и система готова к работе. Аналоговым системам, как правило, требуется подстройка под параметры конкретной линии передачи, учитывающая ее длину и интенсивность сигнала. Дополнительное время на регулировку влечет за собой дополнительные затраты.

Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже

Из-за меньшего количества компонентов, которые могут со временем выйти из строя, цифровые системы гораздо более стабильны и надежны. Для них не потребуется повторная на- стройка, а поиск неисправности займет гораздо меньше времени, поскольку в них нет перекрестных искажений, дрейфа параметров и других недостатков, свойственных традиционным аналоговым системам.

Подведем итог. Передатчики и приемники для цифровых систем стоят дешевле, расход кабеля меньше, эксплуатационные расходы ниже. Цифровые оптоволоконные системы обеспечивают очевидное экономическое преимущество на всех уровнях.

ВЫВОДЫ

Как оптоволоконная технология имеет много преимуществ по сравнению с традиционными медными проводами и коаксиальными кабелями, так и цифровая передача информации продвигает оптоволоконную технологию на несколько ступеней вверх, давая пользователям целый набор новых полезных качеств. Цифровые системы обладают уникальными характеристиками: точностью передачи сигнала на всей длине линии связи, минимальными вносимыми искажениями (в том числе отсутствием перекрестных искажений и интермодуляции), возможностью многократного восстановления цифрового потока при его передаче по длинной линии без ущерба для качества закодированного в нем аналогового сигнала. Это гарантирует уровень верности воспроизведения аналогового сигнала, недостижимый для аналоговых систем.

Цены на компоненты цифровых и аналоговых оптоволоконных систем сопоставимы, а с учетом затрат на монтаж, эксплуатацию и техническое обслуживание цифровые системы дают очевидную экономическую выгоду.

Разрабатывая новую оптоволоконную систему, не тратьте время на анализ преимуществ и недостатков цифровых и аналоговых систем, поскольку выбор совершенно очевиден: цифровые системы лучше с любой точки зрения. Гораздо полезнее будет ограничиться только ими и подобрать те изделия, которые наилучшим образом соответствуют вашим потребностям. Даже среди цифровых систем существует огромное разнообразие решений. Вот некоторые вопросы, которые помогут вам при их оценке:

  • насколько проста установка системы?
    • если передатчик и приемник настраиваются пользователем, то насколько просто это сделать и какие существуют проблемы?
  • компактна ли, прочна и надежна конструкция приборов?
  • выпускаются ли приборы в настольных корпусах или предназначены для установки в стойку? Существуют ли варианты в обоих типах корпусов?
    • пригодны ли приборы для использования как с одномодовыми, так и многомодовыми световодами?
    • обладает ли изготовитель достаточным опытом и репутацией на рынке предлагаемых им изделий?
    • как соотносится цена изделия с ценой традиционных аналоговых систем? (Цифровые приборы в производстве не дороже аналоговых и их стоимость не должна быть выше).

Анализ рынка и сравнение характеристик аналогичных изделий позволит вам в итоге подобрать элементы цифровых оптоволоконных систем, которые верой и правдой будут служить вам в течение многих лет.

Оптоволоконные кабели применяются для высокоскоростной передачи данных во множестве отраслей, особенно в сфере телекоммуникаций. Но что именно представляет собой оптоволоконный кабель? Как он работает? Как он сконструирован? В этой статье мы постараемся дать ответы на все эти вопросы.

Что такое оптоволоконные кабели?

В целом оптоволоконные кабели мало чем отличаются от кабелей других типов. За тем исключением, что для передачи данных в них используется не энергия (электроны), а свет (фотоны). Оптоволоконная передача данных – это общий термин, обозначающий передачу информации в форме света.

Как устроены оптоволоконные кабели?

В основе оптоволоконного кабеля лежит сердцевина, состоящая из кварцевого стекла или пластикового волокна. Именно эта сердцевина служит основным проводником света внутри кабеля. Между сердцевиной кабеля и его оболочкой находится еще один слой, называемый «пограничным» (boundary layer). Он служит для того, чтобы отражать свет. Индекс отражения света (refractive index) напрямую влияет на скорость передачи светового луча.

Далее находится сама оболочка сердцевины, которая также выступает в качестве проводника лучей света, однако имеет меньший индекс отражения, нежели сердцевина . Оболочку покрывает следующий слой, называемый «буферным» (buffer). Его функцией является предотвращение образования влажности внутри сердцевины и оболочки.
И наконец, финальный слой – внешнее покрытие кабеля, которое защищает кабель от механических повреждений.

Как оптоволоконные кабели передают лучи света?

Для передачи данных по оптоволокну, входящий электрический сигнал конвертируется в световой импульс при помощи специального электрооптического конвертера. После этого световой луч начинает движение по кабелям. В финальной точке своего маршрута луч попадает в оптоэлектронный конвертер, где преобразуется в электронные сигналы.
Различные типы оптоволоконных кабелей имеют различный диаметр сердцевины. Сердцевины с большим диаметром могут передавать больше лучей. Оптоволоконные кабели можно изгибать, однако следует убедиться, что кабель не изогнут слишком сильно, поскольку в этом случае передача световых лучей внутри кабеля может быть нарушена.

Какие бывают типы оптоволоконных кабелей?

Существует несколько типов оптоволоконных кабелей. Рассмотрим их все.

Multi-mode fibres with step-index profile (Многомодовые кабели со ступенчатым показателем преломления)

Многомодовые кабели со ступенчатым показателем преломления являются самыми простыми оптоволоконными кабелями. Они состоят из стеклянного ядра, имеющего постоянный индекс отражения. Данный тип кабеля позволяет одновременно передавать несколько лучей, которые отражаются с различной интенсивностью и передаются по зигзагообразной траектории. Однако индекс отражения остается постоянным.
По причине того, что лучи многократно преломляются под различными углами, скорость передачи данных снижается. Кабели данного типа обеспечивают пропускную способность до 100 MHz и позволяют передавать сигналы на расстояние до 1 километра. Диаметры ядра кабелей данного типа обычно составляют: 100, 120 или 400 µm.
Multi-mode fibres with graded index (Многомодовые кабели с градиентным показателем преломления).

Также как и предыдущий тип кабеля, данный кабель позволяет одновременно передавать множество сигналов, однако сигналы внутри оптоволокна преломляются не зигзагом, а по параболической траектории, что позволяет существенно увеличить скорость передачи данных. К минусам данных кабелей можно отнести более высокую стоимость. Кабели данного типа обычно применяются для построения сетей высокоскоростной передачи данных.
Диаметры ядра: 50 µm, 62,5 µm, 85 µm, 100 µm, 125 µm, 140 µm.

Single-mode fibres (Одномодовые кабели)


Одномодовые оптоволоконные кабели имеют очень небольшой диаметр ядра и позволяют одновременно передавать только один сигнал. Отсутствие преломлений положительно сказывается на скорости и дистанции передачи данных. Одномодовые кабели стоят достаточно дорого, но обеспечивают отличные показатели пропускной способности и дальности передачи данных, до100(Gbit/s)км.

Каковы преимущества использования оптоволоконных кабелей?
По сравнению с обычными кабелями оптоволокно обеспечивает такие преимущества как:
Устойчивость к радиопомехам и перепадам напряжения
Повышенный уровень прочности
Высокоскоростная передача данных на большие расстояния
Устойчивость к электромагнитным помехам
Совместимость с кабелями других типов

Способы передачи сигналов различного типа, данных и команд управления по оптоволоконным линиям связи начали активно внедряться в последнее десятилетие прошедшего века. Однако достаточно долго они не могли составить серьезной конкуренции (по крайней мере, в сегменте ТСБ) коаксиальному кабелю и витой паре. Несмотря на такие недостатки, как высокие сопротивление и емкость, что существенно ограничивает дальность передачи сигнала, коаксиальный кабель и витая пара превалировали в системах безопасности. Сегодня ситуация начинает меняться, причем рискну утверждать, что перемены эти кардинальные. Нет, в небольших системах, где видео и сигналы управления требуется передавать на небольшие расстояния, коаксиальный кабель и витая пара по-прежнему незаменимы. В крупных и особенно распределенных системах у оптоволокна альтернативы практически нет.
Дело в том, что оптоволоконное оборудование сегодня стало гораздо доступнее по цене и тенденция к его дальнейшему удешевлению достаточно устойчива.
Так что волоконная оптика в настоящее время дает возможность предложить заказчику систем безопасности не только надежное, но и экономически выгодное решение. Использование светового луча для передачи сигнала, широкая полоса пропускания позволяют передавать сигнал высокого качества на значительные расстояния без использования усилителей и повторителей.
Основными преимуществами использования волоконной оптики, как известно, являются:
– более широкая полоса пропускания (до нескольких гигагерц), чем у медного кабеля (до 20 МГц);
– невосприимчивость к электрическим помехам, отсутствие «земляных петель»;
– низкие потери при передаче сигнала, ослабление сигнала составляет около 0,2–2,5 дБ/км (для коаксиального кабеля RG59 – 30 дБ/км для сигнала 10 МГц);
– не вызывает помех в соседних «медных» или других оптоволоконных кабелях;
– большая дальность передачи;
повышенная безопасность передачи данных;
хорошее качество передаваемого сигнала;
– оптоволоконный кабель миниатюрен и легок.

Принцип работы оптоволоконной линии
Волоконная оптика -–технология, в которой в качестве носителя информации используется свет, и не важно, о каком типе информации идет речь: аналоговом или цифровом. Обычно используется инфракрасный свет, а средой передачи служит стекловолокно.
Оптоволоконное оборудование может использоваться для передачи аналогового или цифрового сигнала различных типов.
В простейшем варианте исполнения оптоволоконная линия связи состоит из трех компонентов:
– волоконно-оптического передатчика для преобразования входного электрического сигнала от источника (например, видеокамеры) в модулированный световой сигнал;
– оптоволоконной линии, по которой световой сигнал передается на приемник;
– волоконно-оптического приемника, преобразующего сигнал в электрический, практически идентичный сигналу источника.
Источником распространяемого по оптическим кабелям света является светодиод (LED) (или полупроводниковый лазер – LD). На другом конце кабеля принимающий детектор преобразует световые сигналы в электрические. Волоконная оптика опирается на особый эффект – преломление при максимальном угле падения, когда имеет место полное отражение. Это явление происходит в том случае, когда луч света выходит из плотной среды и попадает в менее плотную среду под определенным углом. Внутренняя жила (нить) оптоволоконного кабеля имеет более высокий показатель преломления, чем оболочка. Поэтому луч света, проходя по внутренней жиле, не может выйти за ее пределы из-за эффекта полного отражения (рис. 1).Таким образом, транспортируемый сигнал идет внутри замкнутой среды, проделывая путь от источника сигнала до его приемника.
Остальные элементы кабеля лишь предохраняют хрупкое волокно от повреждений внешней средой различной агрессивности.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!