Линейка мобильных процессоров Intel Haswell. Серверы и рабочие станции

ВведениеТак уж повелось, что каждый год компания Intel обновляет микроархитектуру своих процессоров, нацеленных на использование в общеупотребительных персональных компьютерах. Этот график стал уже настолько привычен, что воспринимается как что-то само собой разумеющееся. Sandy Bridge были выпущены в начале 2011 года, Ivу Bridge появились в апреле 2012, а актуальные на данный момент Haswell были представлены 4 июня прошлого года. Учитывая сложившийся распорядок, рынок уже вовсю ожидает процессоры нового поколения – Broadwell. Однако с ними всё сложилось не слишком удачно. Внедрение нового 14-нм техпроцесса, который Intel должна использовать для производства Broadwell, натолкнулось на сложности производственного характера. Поэтому изначальный план, предполагавший появление нового поколения процессорного дизайна в середине этого года, пришлось пересмотреть. Согласно имеющимся актуальным данным, анонс мобильных энергоэффективных вариантов Broadwell произойдёт накануне Нового года, а основанные на этом дизайне процессоры для массовых настольных и мобильных компьютеров станут доступны лишь в следующем году.

В сложившейся ситуации Intel решила как-то скрасить незапланированное затянувшееся ожидание новинок и придумала акцию, получившую кодовое название Haswell Refresh. Её суть заключается в том, что вместо выхода новых процессоров Broadwell компания предлагает усовершенствованные модели старых, производительность которых улучшена не новой микроархитектурой, а увеличенными тактовыми частотами. Официальный анонс CPU, входящих во множество Haswell Refresh, был назначен на 11 мая, и он уже состоялся. В интеловском прайс-листе появилось 42 новые позиции, 24 из которых нацеливаются на настольные системы различных классов. В этом обзоре мы познакомимся с теми из обновлённых Haswell, которые предназначаются для ординарных десктопов и относятся к семействам Core i7, Core i5 и Core i3.

Подробнее о Haswell Refresh для десктопов

Итак, говоря о Haswell Refresh, Intel фактически имеет в виду простое повышение частот своих LGA 1150 процессоров семейства Haswell. В выходе таких обновлённых продуктов нет ничего необычного – компания постепенно повышала частоты своих процессоров между анонсами новых микроархитектур и раньше, просто до этого такие события были разрознены, и им не уделялось столько внимания. Отличительная же особенность Haswell Refresh в том, что рост частот происходит не у отдельных моделей, а у всей линейки целиком, снизу доверху.

Причём, столько внимания Haswell Refresh уделяется не из-за их какой-то новизны или заметного увеличения производительности. Вся шумиха – искусственна, её специально генерирует сама Intel, пытаясь создать впечатление непрекращающихся инноваций даже несмотря на перенос анонса Broadwell на более поздний срок. Другими словами, выход Haswell Refresh – вполне ординарное обновление, а свежие процессоры отличаются от старых, присутствующих на рынке уже почти год Haswell, только возросшей на смешные 100 МГц частотой. То есть, речь идёт о незначительном приросте в производительности, составляющем порядка 2-3 процентов, и не более того.

К счастью, за этот небольшой прирост быстродействия покупатели не должны ничего платить. Новые процессоры Haswell Refresh заняли старые позиции в прайс-листе, вытеснив оттуда Haswell образца прошлого года. Если говорить конкретно о предложениях для настольных компьютеров, то происходящая замена выглядит следующим образом:

Необходимо подчеркнуть, что рост тактовой частоты происходит в рамках установленных ранее тепловых пакетов: 84 Вт для Core i7 и Core i5 и 54 Вт – для Core i3. Однако при этом в основе Haswell Refresh остаются точно такие же полупроводниковые кристаллы, как и использовались ранее. Улучшение частотного потенциала обеспечивается исключительно совершенствованием интеловского 22-нм технологического процесса, ревизия же ядра в новинках не меняется и сохраняет номер C0. А это означает, что принципиальных улучшений в тепловых и электрических характеристиках, как и в каких-то иных нюансах работы новых процессоров, ожидать не следует.



Процессоры Haswell Refresh для настольных систем


Абсолютно также как предшественники выглядят процессоры Haswell Refresh и внешне.



Слева – обычный Haswell, справа – Haswell Refresh


Единственное связанное с выходом Haswell Refresh интересное и принципиально важное изменение коснётся оверклокерских процессоров K-серии, полной информации о которых пока нет в силу того, что они будут представлены несколько позже, предположительно 2 июня. Пока Intel продолжит предлагать для оверклокеров старые модели Core i7-4770K и Core i5-4670K, но те процессоры, которые придут им на смену, заслуживают отдельного рассказа.

Дело в том, что в разновидностях Haswell Refresh со свободными множителями, имеющих собственное собирательное кодовое имя Devil’s Canyon, мы увидим не только возросшие паспортные частоты. Intel собирается сделать эти процессоры более привлекательными для разгона, для чего планирует внести серьёзные изменения в их упаковку. Теплопроводящий материал, расположенный между процессорным кристаллом и крышкой-теплораспределителем будет заменён на более эффективный, а сама крышка будет изготавливаться из другого сплава с лучшей теплопроводностью. По предварительным данным, семейство Devil’s Canyon будет состоять из двух разблокированных LGA 1150 процессоров: Core i7-4790K и Core i5-4690K. Причём, они получат более высокий, чем у обычных Haswell Refresh, тепловой пакет и заметно повышенные тактовые частоты даже в номинальном режиме.

К сожалению, это пока всё, что известно о Devil’s Canyon, но когда образцы этих CPU появятся в нашей лаборатории, мы непременно поделимся исчерпывающей информацией о них в наших обзорах. Сегодня же речь будет идти только об обычных десктопных Haswell Refresh со стандартным уровнем тепловыделения, которые уже можно купить в магазинах.

В серии Core i7 новинка пока только одна:


Core i7-4790 повышает тактовую частоту старшей линейки процессоров для платформы LGA 1150 на 100 МГц, обгоняя, таким образом, и оверклокерский Core i7-4770K, и обычный Core i7-4771. В остальном, это типичный Core i7 поколения Haswell: он имеет четыре ядра, поддерживает Hyper-Threading, располагает вместительным кэшем третьего уровня объёмом 8 Мбайт. Графическое ядро, как и у предшественников, относится к классу GT2, то есть располагает 20 исполнительными устройствами. Следует отметить, что благодаря технологии Turbo Boost 2.0 типичной частотой работы для Core i7-4790 является 3.8 ГГц.



Core i7-4790


Полный набор технологий обеспечения безопасности, включая vPro, TXT и VT-d, этим процессором также поддерживается в полном объёме. Иными словами, Core i7-4790 – это новый флагман для платформы LGA 1150, но без поддержки разгона.

В серии Core i5 появилась три новых процессора Haswell Refresh:



У этих процессоров частоты по сравнению с предшественниками повысились тоже всего на 100 МГц. Но этого оказалось достаточно для того, чтобы старший Core i5-4690 стал быстрее Core i5-4670K и перехватил лидерство в этой линейке. Остальные же процессоры органично разместились в свободных ранее частотных слотах. Прочие их характеристики не поменялись. Hyper-Threading в серии Core i5 не поддерживается, L3-кэш сокращён до 6 Мбайт, используемое графическое ядро – GT2.



Core i5-4690



Core i5-4590



Core i5-4460


Младший процессор Core i5-4460 занимает в серии особое место: в нём отключены технологии обеспечения безопасности vPro и TXT, а также не поддерживаются инструкции для работы с транзакционной памятью. Технология Turbo Boost 2.0 делает типичной рабочей частотой для Core i5-4690 – 3,7 ГГц, для Core i5-4590 – 3,5 ГГц и для Core i5-4460 – 3,2 ГГц.

Серия Core i3 с выходом Haswell Refresh приросла ещё тремя модификациями:



Здесь также произошло 100-мегагерцовое увеличение тактовых частот при сохранении всех остальных характеристик. Процессоры Core i3, в отличие от старших моделей, двухъядерные, но они поддерживают технологию виртуальной многопоточности Hyper-Threading. За счёт этого они обладают меньшим расчётным тепловыделением на уровне 54, а не 84 Вт. Следует отметить, что в линейке Core i3 на момент анонса Haswell Refresh уже не было свободных частотных слотов, поэтому вышло так, что модель Core i3-4350 полностью совпала по характеристикам с Core i3-4340. Единственное отличие новой модификации – более низкая цена.



Core i3-4360



Core i3-4350



Core i3-4150


В процессорах Core i3-4360 и Core i3-4350 размер кэш-памяти третьего уровня составляет 4 Мбайт, а у Core i3-4150 кэш уменьшен до 3 Мбайт. Хуже во младшей модели и графическое ядро. Хотя формально все Core i3 снабжены графикой GT2, в Core i3-4150 количество исполнительных устройств GPU уменьшено с 20 до 16.

Любые LGA 1150 процессоры Haswell Refresh никаких дополнительных условий на материнские платы не накладывают. Несмотря на то, что к их появлению приурочено и обновление платформы с её переводом на новые наборы логики девятой серии (Z97 и H97), все новые CPU без проблем работают в старых LGA 1150-материнках с чипсетами восьмой серии. Для их правильного определения платами, выпущенными в прошлом году, требуется только обновление BIOS.

Что касается разгонных возможностей, то у Haswell Refresh, вышедших к настоящему моменту, их вообще нет ни в каком объёме. Увеличение частот выше номинальных сменой множителя невозможно, разгон же по шине крайне ограничен. Фактически, предел, до которого можно разогнать базовый тактовый генератор, составляет порядка 105-110 МГц. То есть, приобретение Haswell Refresh с целью эксплуатации их в нештатных режимах какого бы то ни было смысла лишено. Впрочем, разгон памяти до уровня DDR3-2400 неоверклокерские процессоры для платформы LGA 1150 всё же позволяют.

Как мы тестировали

Новые процессоры, относящиеся к множеству Haswell Refresh, мы сравнили с их предшественниками, ординарными Haswell, которые уже почти год доступны в продаже. В результате, список задействованных в тестировании аппаратных компонентов выглядит следующим образом:

Процессоры:

Intel Core i7-4790 (Haswell, 4 ядра + HT, 3,6-4,0 ГГц, 4x256 Кбайт L2, 8 Мбайт L3);
Intel Core i7-4770K (Haswell, 4 ядра + HT, 3,5-3,9 ГГц, 4x256 Кбайт L2, 8 Мбайт L3);
Intel Core i5-4690 (Haswell, 4 ядра, 3,5-3,9 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4670K (Haswell, 4 ядра, 3,4-3,8 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4590 (Haswell, 4 ядра, 3,3-3,7 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4570 (Haswell, 4 ядра, 3,2-3,6 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4460 (Haswell, 4 ядра, 3,2-3,4 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i5-4440 (Haswell, 4 ядра, 3,1-3,3 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Intel Core i3-4360 (Haswell, 2 ядра + HT, 3,7 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4350 (Haswell, 2 ядра + HT, 3,6 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4340 (Haswell, 2 ядра + HT, 3,6 ГГц, 2x256 Кбайт L2, 4 Мбайт L3);
Intel Core i3-4150 (Haswell, 2 ядра + HT, 3,5 ГГц, 2x256 Кбайт L2, 3 Мбайт L3);
Intel Core i3-4130 (Haswell, 2 ядра + HT, 3,4 ГГц, 2x256 Кбайт L2, 3 Мбайт L3).

Процессорный кулер: Noctua NH-U14S.
Материнская плата: Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX).
Видеокарта: NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
Дисковая подсистема: Intel SSD 520 240 GB (SSDSC2CW240A3K5).
Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8 Enterprise x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.0.13;
Intel Management Engine Driver 10.0.0.1204;
Intel Rapid Storage Technology 13.0.3.1001;
NVIDIA GeForce Driver 335.23.

Производительность

Общая производительность

Для оценки производительности процессоров в общеупотребительных задачах мы традиционно используем тестовый пакет Bapco SYSmark, моделирующий работу пользователя в реальных распространённых современных офисных программах и приложениях для создания и обработки цифрового контента. Идея теста очень проста: он выдаёт единственную метрику, характеризующую средневзвешенную скорость компьютера при повседневном использовании. Недавно этот бенчмарк в очередной раз обновился, и теперь мы задействуем самую последнюю версию – SYSmark 2014.



Результаты, отображённые на диаграмме, вполне ожидаемы. Учитывая, что в процессорах Haswell Refresh нет никаких усовершенствований и оптимизаций на уровне микроархитектуры, всё решает тактовая частота. А, поскольку в новых CPU она возросла всего на 100 МГц, отличия в показателях производительности старых Haswell и представителей множества Haswell Refresh, приходящих им на смену, составляет в среднем 2,5 процента. Конкретнее: Core i7-4790 обгоняет Core i7-4771 (он же Core i7-4770K) на 1,8 процента; Core i5-4690 превосходит Core i5-4670 на 2,3 процента; Core i5-4590 опережает Core i5-4570 на 2,3 процента, Core i5-4460 быстрее Core i5-4440 на 2,7 процента, Core i3-4360 превосходит Core i3-4340 на 3,1 процента, а Core i3-4150 обгоняет Core i3-4130 на 2,3 процента.

Более глубокое понимание результатов SYSmark 2014 способно дать знакомство с оценками производительности, получаемое в различных сценариях использования системы. Сценарий Office Productivity моделирует типичную офисную работу: подготовку текстов, обработку электронных таблиц, работу с электронной почтой и посещение Интернет-сайтов. Сценарий задействует следующий набор приложений: Adobe Acrobat XI Pro, Google Chrome 32, Microsoft Excel 2013, Microsoft OneNote 2013, Microsoft Outlook 2013, Microsoft PowerPoint 2013, Microsoft Word 2013, WinZip Pro 17.5 Pro.



В сценарии Media Creation моделируется создание рекламного ролика с использованием предварительно отснятых цифровых изображений и видео. Для этой цели применяются популярные пакеты Adobe Photoshop CS6 Extended, Adobe Premiere Pro CS6 и Trimble SketchUp Pro 2013.



Сценарий Data/Financial Analysis посвящён статистическому анализу и прогнозированию инвестиций на основе некой финансовой модели. В сценарии используются большие объёмы численных данных и два приложения Microsoft Excel 2013 и WinZip Pro 17.5 Pro.




Игровая производительность

Как известно, производительность платформ, оснащенных высокопроизводительными процессорами, в подавляющем большинстве современных игр определяется мощностью графической подсистемы. Именно поэтому при тестировании процессоров мы выбираем наиболее процессорозависимые игры, а измерение количества кадров выполняем дважды. Первым проходом тесты проводятся без включения сглаживания и с установкой далеко не самых высоких разрешений. Такие настройки позволяют оценить, насколько хорошо проявляют себя процессоры с игровой нагрузкой в принципе, а значит, позволяют строить догадки о том, как будут вести себя тестируемые вычислительные платформы в будущем, когда на рынке появятся более быстрые варианты графических ускорителей. Второй проход выполняется с реалистичными установками – при выборе FullHD-разрешения и максимального уровня полноэкранного сглаживания. На наш взгляд такие результаты не менее интересны, так как они отвечают на часто задаваемый вопрос о том, какой уровень игровой производительности могут обеспечить процессоры прямо сейчас – в современных условиях.





















Мы не стали загружать обзор большим количеством игровых тестов, так как прирост производительности, который обеспечивают процессоры семейства Haswell Refresh, не слишком заметен. Тем не менее, на приведённых графиках можно отметить несколько разнообразных вариантов того, как складывается игровая производительность.

Так, Batman: Arkham Origin – игра, в которой производительности любых интеловских процессоров оказывается достаточно для того, чтобы полностью загрузить флагманскую графическую карту NVIDIA GeForce GTX 780 Ti. В результате, в ней мы видим крайне незначительное влияние выбора CPU на результат, а новые Haswell Refresh вообще ничем не выделяются на фоне предшественников.

Civilization V: Brave New World – стратегическая игра, где выполняются активные расчёты на CPU, однако и здесь слишком мощные процессоры оказываются ни к чему. Начиная с Core i5-4570 и выше прирост производительности почти незаметный. Однако и ниже этой своеобразной границы преимущество Haswell Refresh над равноценными предшественниками составляет в районе 3 процентов.

Metro: Last Light – весьма процессорозависимый шутера, но при максимальных настройках качества (в первую очередь, из-за тесселяции), частота кадров всё равно упирается в мощность видеокарты. Зато при уменьшении разрешения можно увидеть небольшой эффект от увеличения частоты в свежеанонсированных Haswell Refresh. Его масштаб стандартен – около 2 процентов.

В Thief всё выглядит ещё интереснее. Эта – одна из немногих игр, отрицательно относящихся к технологии Hyper-Threading в четырёхъядерных процессорах. Она оптимизирована под четыре потока, и дополнительные виртуальные ядра в Core i7 только снижают производительность. Если же говорить об эффекте, который даёт подмена Haswell на Haswell Refresh, то он вновь незначителен: не более 3 процентов при пониженном разрешении и не более 1 процента при максимальных настройках графики.

Тесты в приложениях

В Autodesk 3ds max 2014 мы измеряем скорость рендеринга в mental ray специально подготовленной сложной сцены.



Производительность в новом Adobe Premiere Pro CC тестируется измерением времени рендеринга в формат H.264 Blu-Ray проекта, содержащего HDV 1080p25 видеоряд с наложением различных эффектов.



Измерение производительности в новом Adobe Photoshop CC мы проводим с использованием собственного теста, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, включающий типичную обработку четырёх 24-мегапиксельных изображений, сделанных цифровой камерой.



Для измерения быстродействия процессоров при компрессии информации мы пользуемся архиватором WinRAR 5.0, при помощи которого с максимальной степенью сжатия архивируем папку с различными файлами общим объёмом 1,7 Гбайт.



Для оценки скорости перекодирования видео в формат H.264 использовался тест x264 FHD Benchmark 1.0.1 (64bit), основанный на измерении времени кодирования кодером x264 исходного видео в формат MPEG-4/AVC с разрешением 1920x1080@50fps и настройками по умолчанию. Следует отметить, что результаты этого бенчмарка имеют огромное практическое значение, так как кодер x264 лежит в основе многочисленных популярных утилит для перекодирования, например, HandBrake, MeGUI, VirtualDub и проч. Мы периодически обновляем кодер, используемый для измерений производительности, и в данном тестировании приняла участие версия r2431, в которой реализована поддержка всех современных наборов инструкций, включая и AVX2.



Никакие приложения не позволяют выявить заметные преимущества процессоров Haswell Rafresh над их предшественниками. Это вполне естественно. Единственное изменение в новых CPU – повышенная частота. Так что заметному приросту быстродействия взяться просто неоткуда. Результаты новых Core i7-4790, Core i5-4690, Core i5-4590, Core i5-4460, Core i3-4360, Core i3-4350 и Core i3-4150 лучше, чем у давно присутствующих на рынке предложений того же класса и той же стоимости максимум на 3 процента.

Энергопотребление

Изменения в производительности, преподнесённые Haswell Refresh, совершенно не впечатляют. Никаких же других улучшений в новых модификациях процессоров, исходя из того, что они основываются на полупроводниковом кристалле старой ревизии, быть не должно. Тем не менее, остаётся небольшая надежда на какие-то улучшения в тепловых и энергетических характеристиках, которые могли произойти за счёт совершенствования производственного технологического процесса. Проверим.

На следующих ниже графиках, если иное не оговаривается отдельно, приводится полное потребление систем (без монитора), измеренное на выходе из розетки, в которую подключен блок питания тестовой системы, и представляющее собой сумму энергопотребления всех задействованных в системе компонентов. В суммарный показатель автоматически включается и КПД самого блока питания, однако учитывая, что используемая нами модель БП, Corsair AX760i, имеет сертификат 80 Plus Platinum, его влияние должно быть минимально. Для правильной оценки энергопотребления мы активировали турбо-режим и все имеющиеся энергосберегающие технологии: C1E, C6 и Enhanced Intel SpeedStep.

В первую очередь измерению подверглось потребление в состоянии простоя.



Здесь все процессоры проявили редкостное единодушие. Оно и понятно: в простое Haswell переходят в энергосберегающие состояния и снижают своё энергопотребление практически до нулевых величин. Поэтому те числа, которые приведены на диаграмме, больше характеризуют потребление остальной части тестовой платформы.

Затем мы измерили максимальное потребление при нагрузке, создаваемой 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX2, базирующейся на пакете Linpack.



Приведённая диаграмма очень явно демонстрирует отсутствие каких-либо улучшений в энергопотреблении у процессоров Haswell Refresh. Новые и более быстрые модели требуют электроэнергии больше, чем их предшественники. При этом проведённый в новых модификациях CPU 100-мегагерцовый разгон выливается примерно в 5-процентный рост энергопотребления. Заметим, что, несмотря на это, Intel не сочла нужным увеличивать для Haswell границы теплового пакета. Иными словами, тепловыделение любых Core i7 и Core i5 должно вписываться в 84-ваттные рамки, а Core i3 – в 54-ваттные.

Учитывая, что энергопотребление, инициируемое базирующейся на пакете Linpack утилитой LinX, сильно превышает средний реалистичный уровень, мы измерили потребление и при более «приземлённой» нагрузке – перекодировании видеоролика при помощи 64-битной версии кодека x264 версии r2431.



В целом, картина здесь точно такая же, как и при нагрузке, создаваемой LinX. Меньше лишь абсолютные значения энергопотребления. Тем не менее, процессоры Haswell Refresh потребляют больше своих предшественников одного класса на те же 5 процентов. Всё это означает лишь одно: никаких улучшений в потреблении новых моделей Haswell не сделано.

Нет никаких явных изменений и в температурном режиме новинок. Очевидно, что в обычных Haswell Refresh теплопроводящий материал под крышкой остался таким же неудачным, что и раньше. Температура ядер при возникновении нагрузки у новых процессоров возрастает практически моментально и держится на высоком уровне даже в том случае, если в системе установлен эффективный кулер. Например, в нашем случае, при использовании кулера Noctua NH-U14S, старший из Haswell Refresh, Core i7-4790 при работе утилиты LinX очень быстро нагревался до 84 градусов. И это без всякого разгона, в номинальном режиме!



Напомним, предельная температура, при которой процессоры семейства Haswell включают троттлинг, – 100 градусов.

Выводы

Подводя итог, мы вынуждены констатировать, что громкое название Haswell Refresh получили совершенно ординарные процессоры, которые своим выходом не привносят практически ничего нового. Для их выпуска Intel не стала проделывать никакой инженерной работы. Поэтому, потребительские качества свежих CPU для платформы LGA 1150 практически не отличаются от того, что предлагалось раньше. Количество ядер, объём кэш-памяти, тип встроенного графического ядра, набор поддерживаемых технологий – всё осталось неизменным. Не было сделано никаких оптимизаций и на уровне полупроводникового кристалла, поэтому тепловыделение и энергопотребление Haswell Refresh осталось на типичном для Haswell уровне.

Единственное, где можно увидеть хоть какое-то движение вперёд – это тактовые частоты. Однако, учитывая, что рост частот не подкрепляется никакими технологическими или инженерными улучшениями, а носит характер лишь простого разгона старых моделей, их увеличение оказалось крайне слабым. Фактически, в рамках Haswell Refresh Intel нарастила скорость работы своих процессоров на минимально возможную дельту – на 100 МГц. Соответственно точно такой же, минимальный, прирост в производительности мы увидели и в процессе тестирования. Новые процессоры Haswell Refresh оказались быстрее старых Haswell на 2-3 процента и не более того.

Всё это означает, что выход Haswell Refresh может быть интересен только в том случае, если вы ещё не мигрировали на платформу LGA 1150. Учитывая, что стоимость новых моделей не выше, чем у старых, при покупке нового компьютера теперь вполне естественно спрашивать в магазинах именно новые модификации процессоров. А если у вашего любимого поставщика Haswell Refresh в прайс-листе пока отсутствуют, лучше немного повременить с покупкой, но впоследствии получить чуть более высокую производительность за те же деньги.

И, кроме того, не забывайте, что примерно через три недели нас ожидает выход ещё пары процессоров, формально относящихся к числу обновлённых Haswell, Core i7-4790K и Core i5-4690K. Эти CPU, имеющие собственное кодовое имя Devil’s Canyon, в отличие от рассмотренных сегодня моделей, обещают стать отличным подарком для энтузиастов. В них появятся и заметно улучшенные тактовые частоты, и понизившиеся рабочие температуры, и лучший разгон. Но не будем забегать вперёд: полный обзор Core i7-4790K и Core i5-4690K вы сможете прочитать на нашем сайте несколько позднее.

Компания Intel готовит к выпуску новый процессор Haswell-EX, который войдёт в третье поколение серверных CPU Xeon E7.

Топовая модель Haswell EX будет включать 18 ядер с 36 потоками, а тепловыделение процессора составит 165 Вт. Называться этот процессор будет Xeon E7-8890 v3, а тактовая частота его ядер составит 2,5 ГГц. Объём кэша третьего уровня будет равен 45 МБ, впрочем, такой же объём L3 кэша ожидается и у остальных новых процессоров.

Следом за флагманом расположится Xeon E7-8867 v3 с таким же TDP , но с 16 ядрами частотой 2,5 ГГц.

Остальные процессоры семейства Haswell-EX будут включать 14, 12, 10 8 или 4 ядра, а их тепловыделение будет находиться в диапазоне от 115 Вт до 165 Вт. Тактовые частоты также будут иметь большой диапазон. К примеру, 10-ядерный Xeon E7-4820 v3 будет работать с частотой 1,9 ГГц, а 4-ядреный Xeon E7-8893 v3 — 3,2 ГГц.

По имеющимся данным, третье поколение процессоров Xeon E7 получит множество модернизаций, таких как поддержка инструкций AVX и TSX, а также поддержку памяти DDR4.

Появились цены на процессоры Haswell Core i3 и Pentium

27 августа 2013 года

На выставке Computex этого года компания Intel продемонстрировала процессоры нового поколения с микроархитектурой Haswell.

Первая волна этих продуктов представляла собой по большей части четырёхъядерный чипы в ценовом диапазоне от 180 до 400 долларов США.

Но не за горами уже и следующая волна CPU этого поколения. В сентябре Intel представит бюджетные решения, которые компания выпустит под брендами Pentium и Core i3. Также будут представлены несколько моделей Core i5 и i7, включая Core i5-4440, i5-4440S и Core i7-4771, и некоторые из них уже доступны для предзаказа в магазинах США.

Итак, процессоры Pentium G3220, G3420 и G3430 получили в магазине Shopbit цену предварительного заказа равную 70,61, 90,18 и 100,26 доллара соответственно, что в целом совпадает с ценами на процессоры поколения Ivy Bridge моделей G2030, G2130 и G2140. Примечательно, что CPU нового поколения имеют те же характеристики, что и предыдущего, так что всё увеличение производительности будет достигаться лишь за счёт усовершенствований архитектуры. Цены на остальные процессоры низкого сегмента сведены в таблицу.

Модель

Ядер/ потоков

Частота/ Turbo

L3 кэш

Графика

Макс. Частота GPU

TDP , Вт

Цена предзаказа

3.1 / 3.3 ГГц

3.5 / 3.9 ГГц

Что касается Core i5-4440, то он оценён в 197 долларов. Этот чип придёт на замену Core i5-4430 с такой же ценой. Цена предварительного заказа на Core i7-4771 составит 334 доллара, что всего на 8 долларов дороже i7-4770 с архитектурой Ivy Bridge.

Представлена обновлённая дорожная карта процессоров Intel

1 августа 2013 года

Согласно новой дорожной карте Intel, компания в ближайшие годы намерена сделать уклон на ультрабуки и устройства 2-в-1, а также на дорогой настольный сегмент.

Основой настольных процессоров Intel в будущем году станет Z97, основанный на референтной архитектуре Haswell. В сентябре компания выпустит Ivy Bridge - E, частота которого в режиме Turbo достигнет 4 ГГц. При этом во втором полугодии 2014 он будет заменён на Haswell-E, работающий с памятью DDR4. Примечательно, что до конца 2014 года компания будет использовать всё тот же сокет — LGA 1150.

Кроме серии Z фирма планирует также подготовить чипсеты серий U и Y, при этом оба, как и ожидалось, получат поддержку SATA3 и USB 3.0.

Представленная дорожная карта наглядно демонстрирует переход Intel на сторону мобильных систем. Рынок ПК быстро сокращается, и Intel старается придерживаться имеющихся тенденций. Ещё на Computex стало понятно, что фирма ищет выхода на давно освоенную компанией ARM территорию — планшеты и смартфоны.

Если же Intel хочет успешно конкурировать с ARM , то ей нужно понижать TDP своих процессоров. Этого компания сможет достичь в своих 14 нм Haswell и Broadwell, однако пока ARM ещё на шаг впереди, несмотря на то, что по заверениям Intel, архитектура Broadwell позволяет создавать процессоры с тепловыделением менее 5 Вт и не требует активного охлаждения, при этом обеспечивая на устройствах 10 часов автономной работы в интернете.

Конечно, успех Intel на этом рынке будет мало что означать для компании, да и вряд ли этот успех будет достигнут в ближайшие пару лет, однако сам факт выхода на рынок мобильных устройств может пошатнуть позиции ARM и повлиять на будущее развитие событий.

Intel Core i7 4770K разогнан до 5 ГГц при напряжении 0,9 В

16 мая 2013 года

До выхода четвёртого поколения процессоров Core от Intel, известных по кодовому имени Haswell, остаются считанные дни, так что неудивительно, что в Сети появляются новые отчёты о тестировании этих CPU . На сей раз наше внимание привлёк процессор Core i7 4770K, который энтузиасты разогнали до 5 ГГц с напряжением ядра всего в 0,9 В.

На китайском форуме оверклокеров Ocaholic.ch появилось довольно интересное достижение по разгону процессора. На валидационном скриншоте CPU -Z показан процессор Core i7 4770K разогнанный до частоты 5005,83 МГц при напряжении питания ядра всего 0,904 В. Как видно, при разгоне был выключен Hyper-threading. Также нет никаких подтверждений о стабильной работе такого процессора, однако в любом случае, даже без этих моментов достижение весьма впечатляет, особенно, учитывая столь низкий вольтаж.

Среди прочих характеристик опытного стенда стоит отметить 4 ГБ памяти DDR3 с частотой 667,5 МГц и материнскую плату ASRock Z87 Extreme4, которая пока также не поступила в продажу.

Объявлены сведения о процессорах Xeon на базе Haswell

9 апреля 2013 года

Итак, процессор Xeon E7 v2 выйдет в конце 2013 года, Xeon E5-2600 v2 выйдет в третьем квартале текущего года. Третья модель, Xeon E5-2400 v2, увидит свет лишь в четвёртом квартале 2014 года.

По имеющимся данным процессор Xeon E7 v2 Brickland получит до 15 ядер и до 37,5 МБ кэша третьего уровня. Также CPU получит технологию Hyper-threading, а значит, он будет способен одновременно обрабатывать до 30 параллельных вычислительных потоков. Кроме этого процессор получит технологии виртуализации VT-x, VT-d и VT-c, Turbo Boost 2.0, Trusted Execution, наряду с Secure Key и OS Guard. В качестве чипсета платформа будет использовать C602J и будет использовать до 4-х масштабируемых буферов памяти на сокет. Каждый из масштабируемых буферов будет поддерживать до трёх модулей DDR3-1600, при этом на каждый процессор можно будет максимально установить 24 модуля памяти. Прочие интерфейсы Xeon E7 v2 будут включать 3 связи QPI и шину PCI Express 3.0 до 32-х линий данных.

Xeon E5 будет несколько урезанным. Он получит 12 ядер (24 потока) и 30 МБ кэша второго уровня. В то же время он получит 40 линий PCI Express 3.0 и 4 канала памяти DDR3-1866. Третья модель, Xeon E5-2400, получит 10 ядер (20 потоков). Известно, что процессор будет устанавливаться в сокет LGA1356.

Intel ускорит выпуск Haswell

6 апреля 2012 года

Согласно сведениям, полученным от информаторов внутри Intel, компания планирует ускорить выпуск процессоров Haswell и сделать это с куда большим темпом, чем выпускаются Ivy Bridge. Есть предпосылки к тому, что Intel выпустит весь модельный ряд CPU разом, а не так как это было с Ivy Bridge, когда сначала появятся четырёхъядерные модели, а лишь затем двухъядерные.

Очевидно, что переход на 22 нм техпроцесс имеет ряд трудностей, и именно поэтому Intel разнесли во времени выпуск новых процессоров. В период с марта по июнь 2013 года, когда Intel планирует осуществить выпуск чипов Haswell, компания наверняка успеет справиться со всеми технологическими трудностями производства микросхем, так что задержек, аналогичных тем что мы наблюдаем сейчас, быть не должно. Таким образом, весь модельный ряд процессоров Haswell, включая Core i7, Core i5 и Core i3, должен быть выпущен в одно и то же время.

Говоря об объёмах производства стоит отметить, что компания планирует выпустить в первом полугодии 2013 г. в два раза больше процессоров Haswell, чем выйдет Ivy Bridge в первой половине 2012 г. Intel по-прежнему имеет технологическое преимущество над остальным миром, а это значит, что и AMD и альянсу ARM ещё предстоит трудная работа по переходу на 22 нм техпроцесс. Наличие такого преимущества является ключевым для Intel, которое позволит им в будущем побороться за лидирующие позиции в производстве планшетных ПК и, возможно, телефонов. Несомненно, эти парни не сдадутся без боя.

Компания Intel прошла очень длинный путь развития, от небольшого производителя микросхем до мирового лидера по производству процессоров. За это время было разработано множество технологий производства процессоров, очень сильно оптимизирован технологический процесс и характеристики устройств.

Множество показателей работы процессоров зависит от расположения транзисторов на кристалле кремния. Технологию расположения транзисторов называют микроархитектурой или просто архитектурой. В этой статье мы рассмотрим какие архитектуры процессора Intel использовались на протяжении развития компании и чем они отличаются друг от друга. Начнем с самых древних микроархитектур и рассмотрим весь путь до новых процессоров и планов на будущее.

Как я уже сказал, в этой статье мы не будем рассматривать разрядность процессоров. Под словом архитектура мы будем понимать микроархитектуру микросхемы, расположение транзисторов на печатной плате, их размер, расстояние, технологический процесс, все это охватывается этим понятием. Наборы инструкций RISC и CISC тоже трогать не будем.

Второе, на что нужно обратить внимание, это поколения процессора Intel. Наверное, вы уже много раз слышали - этот процессор пятого поколения, тот четвертого, а это седьмого. Многие думают что это обозначается i3, i5, i7. Но на самом деле нет i3, и так далее - это марки процессора. А поколение зависит от используемой архитектуры.

С каждым новым поколением улучшалась архитектура, процессоры становились быстрее, экономнее и меньше, они выделяли меньше тепла, но вместе с тем стоили дороже. В интернете мало статей, которые бы описывали все это полностью. А теперь рассмотрим с чего все начиналось.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне - 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение - Nehalem

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры - это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение - Sandy Bridge

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение - Ivy Bridge

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение - Haswell

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс - 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение - Broadwell

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение - Skylake

Следующая архитектура процессоров intel core - шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение - Kaby Lake

Новое, седьмое поколение Core - Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Выводы

В этой статье мы рассмотрели архитектуры процессора Intel, которые использовались раньше, а также те, которые применяются сейчас. Дальше компания планирует переход на техпроцесс 10 нм и это поколение процессоров intel будет называться CanonLake. Но пока что Intel к этому не готова.

Поэтому в 2017 планируется еще выпустить улучшенную версию SkyLake под кодовым именем Coffe Lake. Также, возможно, будут и другие микроархитектуры процессора Intel пока компания полностью освоит новый техпроцесс. Но обо всем этом мы узнаем со временем. Надеюсь, эта информация была вам полезной.

Об авторе

Основатель и администратор сайта сайт, увлекаюсь открытым программным обеспечением и операционной системой Linux. В качестве основной ОС сейчас использую Ubuntu. Кроме Linux интересуюсь всем, что связано с информационными технологиями и современной наукой.

Не стоит ожидать от мейнстримовых четырехядерников Haswell особого прироста производительности (если, конечно, ПО не адаптировано под новые наборы процессорных инструкций), их конек - уменьшенное энергопотребление и соотношение ценапроизводительность. Впрочем, когда речь заходит о топовом железе, то подход "победа любой ценой" по-прежнему актуален.

Мейнстримовые CPU Intel стали двухядерными в 2006 году, с пришествием Core 2 Quad. Четырехядерники “пошли в народ” в 2008 году, с переходом на Nehalem и LGA1156, и в ближайшее время количество ядер не изменится - по крайней мере до 2014 года, когда планируется выход чипов Broadwell, которые будут выпускаться по 14 нм техпроцессу. Это решение вполне оправдано, учитывая что преимущества, предоставляемые дополнительными ядрами, до сих пор не востребованы большинством программ - эффект от более мощного графического процессора или дополнительной кэш-памяти будет существенней. Однако с процессорами высшего ценового диапазона все было не так однозначно, т.к. ПО для рабочих станций и серверов отлично оптимизировано под многоядерные процессоры и как увеличение количества ядер, так и увеличение отдачи каждого ядра может принести результат.

Теперь же, благодаря нашим источникам в IDF, мы можем немного прояснить ситуацию. Как наши читатели уже знают, к середине следующего года топовый процессор для серверных систем, 10-ядерный 2.4 ГГц Xeon E7 4800 семейства “Westmere EX” будет заменен на представителя архитектуры “Ivy Bridge EX” Xeon E7 4800 v2, располагающего 15-ю ядрами и работающий на частотах от 2.2 ГГц, который будет устанавливаться в сокет LGA2011, но с другой распиновкой. В середине 2014 его можно будет заменить на 16-20 ядерный Xeon E7 4800 / 8800 v3 (архитектура Haswell EX), причем сокет останется прежним. За ним последует Xeon E7 4800 / 8800 v4 (архитектура Broadwell EX), который будет выпущен уже в 2015 году. Последние три модели имеют общую черту

В виде шины QPI с тремя линиями - Westmere располагает четырьмя - что негативно скажется на возможностям по взаимодействию с сопроцессорами Xeon Phi или возможности предоставления доступа к системной памяти на полной скорости, что может пригодиться при подключении FPGA.

Самый интересный случай - двухпроцессорная конфигурация, ведь у нее много общего (как минимум - сокет и чипсет) с железом, позиционируемым как домашний high-end. К настоящему моменту ситуация выглядит так:

Текущий 8-ядерник Xeon E5 2600 / 4600 (Sandy Bridge EP) будет заменен в середине следующего года 10-ядерным Xeon E5 2600 / 4600 v2 (Ivy Bridge EP), который будет использовать тот же сокет. Следующий апгрейд намечается уже на 2014 год - Xeon E5 2600 / 4600 v3 (Haswell EP) будет располагать аж 14-ю ядрами и 14-канальным контроллером DDR4-2133, заменяющим DDR3, использовавшийся в системах Ivy Bridge EP и двойные каналы QPI с пропускной способностью около 9,6 ГТ/с, чуть больше чем

Сейчас, который будет устанавливаться в сокет, аналогичный 2011 по размерам но с другой распиновкой. Но зачем увеличивать число ядер и дальше, если компоненты серии ЕХ и так являются эталоном производительности?


Приходят на ум две основные причины. Во-первых, прирост удельной производительности на ядро, который дает Haswell, не так велик - около 10% по сравнению с Ivy Bridge, если не адаптировать ПО под использование новых процессорных инструкций, которые могут быть использованы не во всех алгоритмах. Что неудивительно, так как основное внимание при проектировании Haswell уделялось снижению энергопотребления (ультрабуки!). Так откуда взять прирост производительности, который бы подстегнул продажи?

С другой стороны, понижение энергопотребления позволяет разместить больше ядер на одном кристалле при неизменном TDP. Таким образом 14-ядерный процессор укладывается в лимит 145 Вт (для серверов) и 160 (для рабочих станций), при этом объем L3-кэша на ядро остался прежним - 2,5 Мб. Оправданна ли такая стратегия экстенсивного роста - вопрос спорный. В пределах того же TDP я бы предпочел увидеть процессор с меньшим количеством ядер, но большим объемом кэша на ядро и более

Высокими тактовыми частотами, и значительное число владельцев high-end машин

Были бы со мной согласны, ведь способность ПО использовать большее число потоков за 5 сменившихся поколений процессоров Intel увеличилась незначительно. Так или иначе, даже с 14-ю ядрами новые модели должны иметь по меньшей мере такие же тактовые частоты как их предшественники на Ivy Bridge в пределах того же TDP, а это значит как минимум 3,2 ГГц для топовых моделей для рабочих станций.

На таких частотах теоретическая пиковая производительность на сокет будет равняться 3/4 терафлопс с двойной точностью, таким образом одна двухпроцессорная рабочая станция образца середины 2014 года будет выдавать “на гора” 1,5 терафлопс. Добавьте к этому 8-канальный контроллер памяти DDR4 и вы поймете, что у Nvidia Maxwell появился серьезный конкурент. В конце концов, если CPU обладает достаточной

Мощностью и под него не нужно переписывать ПО почти с нуля, то почему бы не использовать его? В любом случае, оптимизация приложений под GPGPU с их огромным количеством потоков также приведет к тому что ни одно ядро в многоядерных процессорах не будет простаивать. Также не стоит забывать, что Intel не единственная компания на рынке, и у его конкурента имеется опыт разработки комбинированных вычислительных блоков, которые в свете сближения CPU и GPU могут оказаться шансом AMD наверстать упущенное. Ждем Opteron APU?

Если на процессорном фронте AMD уже давно занимается партизанской борьбой, то что касается рынка видеоадапторов ей пока что приходилось бороться только с “заклятым другом” Nvidia. Но ситуация может вскоре измениться.

Следующее поколение архитектуры Intel, под кодовым названием Haswell, это не просто очередной «тик» в мерном такте совершенствования технологий компанией Intel, это новый этап в ее деятельности. Этап, на котором она становится серьезной угрозой как для AMD так и Nvidia. Впервые Intel готова бросить вызов им обоим на рынке массовых графических решений одновременно подрывая позиции Nvidia в бизнесе GPGPU. В то же время маломощные и энергоэффективные решения (ULV-версии процессоров имеют TDP в 10 Вт) станут серьезными конкурентами для SoC на платформе Brazos второго поколения от AMD (кодовое название Kabini), а также любых ноутбуков на базе ARM-процессоров на основе Windows 8 какие могут вывести на рынок такие компании, как Qualcomm.

Давайте рассмотрим эту архитектуру повнимательнее, начиная с CPU.


Шире, больше, быстрее.

Haswell является логическим продолжением микроархитектурных улучшений, впервые представленных Intel в Sandy Bridge. Новый чип получил поддержку второго поколения набора процессорных инструкций Advanced Vector Extensions (AVX2), которые удваивают пиковую пропускную способность FPU ядра. Пропускная способность кэша L1 и L2 была удвоена, чтобы обеспечить загруженность работой исполняющих блоков, а регистровые файлы целочисленных вычислений и FPU были увеличены. Эффективность прогнозирования ветвления также была повышена. Производительность Haswell на один поток в реальных задачах на неоптимизированном коде, по ожиданиям, должна повыситься на 10-15%. Если же оптимизация под AVX2 есть, разрыв будет намного больше - алгоритмы AVX2 включают поддержку векторизации целочисленных значений, что нет в первой версии.

Наращивание мощности FPU и дополнительная функциональность AVX2 будут иметь огромное значение для увеличения производительности в операциях с плавающей точкой. Процессор способен выполнять до 32 операций с плавающей точкой стандартной точности на одном ядре и 16 с двойной точностью. То есть вдвое больше чем Sandy Bridge; теоретически восьмиядерный процессор на архитектуре Haswell с тактовой частотой 3.8 ГГц будет выдавать 972,8 гигафлопс при стандартном уровне точности и 486,4 гигафлопс при удвоенном. И хотя GPU текущего поколения показывают даже лучшие результаты, в рукаве Intel есть козырь - х86 совместимость. Intel отправил на свалку истории поставщиков RISC-суперкомпьютеров в 1990-х и начале 2000-х просто благодаря тому, что их процессоры были «достаточно хороши», и сейчас то же самое угрожает Nvidia и ее концепции GPGPU. Пропускная способность кэша L1/L2 увеличилась радикально, пропускная способность шины L1 также удвоена. Весь дополнительный объем пропускной способности предназначен для того, чтобы блоки AVX2 не простаивали; ожидается, что Haswell покажет достаточно близкое соответствие теоретических значений производительности к скорости выполнения реальных задач.

И хотя у команда под зеленым флагом скорее всего сохранит преимущество в чистой производительности, четырехъядерник Haswell, достигающий 4 ГГц в турборежиме будет выдавать 256 гигафлопс для операций удвоенной точности (512 гигафлопс при стандартной точности). Такой уровень производительности для операций со стандартной точностью находится очень близко к Nvidia GT 640. А так как производительность операций с удвоенной точностью у карт потребительского сектора Nvidia всегда хромала, четырехъядерные процессоры Haswell вполне могут превзойти GTX 680 от Nvidia и, возможно сровняться с GTX 580 в операциях с удвоенной точностью.

Nvidia может выиграть битву за high-end пользователей, но ценой проигрыша на других направлениях - если Intel решит конкурировать с ней серьезно. Хуже того, не стоит забывать про факт, что каждый ПК, оборудованный видеокартой от Nvidia поставляется с ускорителем Intel по умолчанию. Несомненно, Intel собирается сыграть на потенциальной связи с Xeon Phi, учитывая, что три семинара компании на IDF обращались к проблеме векторизации и касались как Haswell так и Xeon Phi.


GPU Haswell усиливает давление на Nvidia, AMD.

GPU Haswell - по сути модифицированная версия ядер, в настоящее время используемых в Ivy Bridge. Главные изменения наблюдаются в шейдерном массиве - Intel будет предлагать Haswell в версиях с блоком, включающим 10, 20 или 40-шейдеров (GT1, GT2, GT3 соответственно). Чип также будет предлагаться в вариантах, которые включают до 128 Мб встроенной памяти - такой вариант предоставляет каждому GPU небольшой выделенный объем памяти. Intel не особо распространяется о изменениях, внесенных в GPU, но компания заявила, что прирост производительности, демонстрируемый новой конфигурацией GT3 в сравнении с производительностью графического ядра HD 4000, встроенного в Ivy Bridge составляет до 200%.

Даже если рассматривать эту информацию со здоровой долей скептицизма, она все равно не предвещает ничего хорошего для AMD и Nvidia. По данным Anandtech, GPU Trinity в среднем на 18% быстрее, чем Liano в играх. По сравнению с Sandy Bridge, Trinity почти на 80% быстрее. Если же сравнить ее с Ivy Bridge, преимущество уменьшается до 20%. Учитывая то, что уже известно о GPU Haswell и его прогнозируемой производительности, для Intel будет не слишком сложно обеспечить прирост производительности в реальных играх в 30-50%. Если это произойдет, Trinity потеряет статус быстрейшего интегрированного GPU на рынке, переходя в разряд середняков, а AMD теряет свой козырь на рынке видеокарт, который она разыгрывала с момента запуска чипсета AMD 780G четыре года назад.


Таким образом у Саннивейла практически не остается места для маневра. 28 нм APU Kaveri, оснащенный графическим ядром следующего поколения на базе Radeon HD 7000 и новые процессоры на архитектуре Steamroller до сих пор не получили даты анонса. Это означает, что мы можем не увидеть их до конца 2013, и это если производство пойдет без запинок. AMD, скорее всего, предложит обновление - что-нибудь вроде Trinity 2.0, чтобы сдержать натиск со стороны Haswell, но слегка повышенные частоты едва ли спасут ситуацию для AMD.

Последними бастионами AMD остаются рынки, которые Intel в общем-то и неинтересны. Это неустойчивое положение для любой компании, которая мечтает бросить вызов лидеру рынка; AMD просто не может позволить себе тратить на НИОКР достаточно чтобы догнать своего давнего соперника. И едва ли Nvidia стоит почивать на лаврах. Планы Intel недвусмысленно дают понять, что компания абсолютно намерена свести к минимуму ценность отдельных графических процессоров за счет использования интегрированных решений там, где это возможно и поддерживать переход на все меньшие форм-факторы, там где это (пока) невозможно.

Таким образом, если Haswell не будут полным провалом, именно он, а не Kaveri станет новой точкой отсчета для энтузиастов. Этот чип с энергопотреблением в 10 Вт не сможет напрямую конкурировать с потенциальными конкурентами - планшетами на базе Tegra 4 - это задача Bay Trail, 22 нм SoC на базе Atom.

Нет, Haswell не обанкротит AMD или напугать Nvidia до такой степени, что та бросит Tesla, - но если план Intel не будет полным провалом, обе компании будут выдавливаться на рынки узкоспециализированных нишевых продуктов. AMD этот ход берет за живое - ее выдавливают на рынки low-end продуктов, которые не представляют ценности для Intel. Nvidia же теперь придется очень постараться, чтобы убедить OEM-производителей найти место для отдельного GPU в их компьютеров, хотя маркетинговая политика Intel и предпочтения покупателей тянут в другую сторону. Предпочтения энтузиастов, исторически слабая поддержка драйверов Intel, и сила бренда Nvidia поможет, но свалка истории IT-индустрии полна компаний, которые считали, что их бренд будет держать пользователей, даже если технические характеристики их продукции хуже чем у конкурентов. Энтузиастов интересует только производительность, а не то, какая компания за ней стоит.

Однако пока что мы поговорили только о решениях для энтузиастов и настольных решений, что немного нелогично, учитывая растущую не по дням а по часам рыночную долю ноутбуков и ультрабуков. Многие усовершенствования архитектуры Haswell были направлены именно на оптимизацию под них. Какие именно? Давайте разберемся.

Интеграция


Haswell для ультрабуков будет иметь TDP 15 Вт, почти как Sandy Bridge, на котором основываются ультрабуки сегодня. Главной новостью здесь является то, что Intel переместит PCH (хаб контроллера платформы) на ту же подложку, что и процессор благодаря чему версия Haswell для ультрабуков будет содержать все компоненты платформы в едином чипе. Sandy Bridge состоял из двух компонентов, поставляемых Intel - процессора и PCH, Haswell же будет единым MCP (многочиповым пакетом). Это означает что на одной подложке будут размещены два вычислительных кристалла, что зачастую явлется предпосылкой к объединению и самих кристаллов (возможно, после перехода на 14 нм техпроцесс?). Единый MCP будет занимать меньшую площадь, чем связка CPU + PCH которая используется сейчас сегодняшний день, что позволит сделать компоновку материнских плат менее плотной (или сделать сам платы меньше), и, возможно, ставить в ультрабуки еще большие батареи. Это значительный шаг который демонстрирует, что грань между железом для планшетов и ультрабуков начинает размываться.

Стоит отметить, что Haswell для ультрабуков может располагать двумя ядрами максимум, хотя версии для ноутбуков и настольных систем могут иметь и больше.

Энергоэффективная память и новый сокет

Список поддерживаемой памяти также скорректирован в сторону оптимизации энергопотребления. Все три версии Haswell будут поддерживать DDR3L, хотя настольное исполнение дополнительно может использовать обычную DDR3, а версия для ультрабуков - LPDDR3. Все три варианта оснащены двумя каналами памяти.

Важно отметить, что, несмотря на фокусирование Haswell на энергоэффективности, архитектура, масштабируется ничуть не хуже, чем Sandy Bridge (будут доступны компоненты для настольных систем с TDP в 95 Вт, хотя прямое сравнение тепловых пакетов может быть не вполне корректным). Что логично, так как единая эффективная архитектура, как правило, может охватывать широкий спектр TDP, не теряя в эффективности.

Другие особенности Haswell включают встроенные регуляторы напряжения (что должно упростить компоновку материнских плат), поддержку набор инструкций AVX 2.0 ну и, разумеется, AES-NI и Hyper-Threading. Выход Haswell также повлечет за собой смену сокета: на настольных компьютерах пропишется LGA-1150.


Заключение

В действительности, удивительного тут мало. Все знали встроенные графические ядра будут становиться все быстрее, хотя по-прежнему неясно, насколько именно мощным будет вариант GT3. Настоящей проверкой его возможностей будет решение компаний-производителей, продолжать ли устанавливать в свои продукты дискретные видеоадаптеры (весьма показательным был бы пример Apple в отношении, скажем, Macbook Pro). Насколько нам известно, планы Intel по усилению своих позиций в сегменте интегрированной графики были встречены с полным одобрением в Купертино.

Продолжение интегрирования новых функций в одном чипе - значительный шаг в области x86 CPU высокого класса, и все указывает, что в грядущем 2013 году разница между планшетами и ноутбуками будет размываться и дальше.

Проапгрейдив до упора Sandy Bridge и переведя его на новый техпроцесс в прошлом году, Intel вплотную подошла к очередному шагу «tock», предписанному самой себе несколькими годами ранее.

«Тик-так» Intel - это не всегда бомба, но, определенно, символ технологического прогресса

На шагах «tock», как явствует из иллюстрации, необходимо вводить новую архитектуру. Что и было сделано - мир увидел микроархитектуру под кодовым именем Haswell и базирующиеся на ней 14 моделей процессоров Core i5 и i7 под разъем LGA 1150 (также известного как Socket H3), из них восемь «обычных» и шесть low power. Вообще, тема энергопотребления (или, если быть точным, «энергопотребления, адекватного для текущей вычислительной мощности») проходит красной нитью через микроархитектуру Haswell, потому как Intel видит большое будущее для своего творения в мобильном сегменте, а без процессора или SoC с умеренными аппетитами делать там нечего. Основным своим конкурентом, судя по сравнениям в открытых источниках, Intel считает поделки на ARM-процессорах, так как они уже хорошо прижились в мобильном сегменте и показали там свою жизнеспособность.

На ниве питания процессоров Intel уже немало сделала. Уходя от изначального регулирования TDP только с помощью напряжения питания процессора, подаваемого на него с преобразователя материнской платы и тактовой частоты ядер, Intel перенесла часть преобразователей в CPU, тем самым открыв для себя возможность более точно (а значит, эффективно) дозировать напряжение на каждом из других блоков, расположенных на кристалле. К тому времени процессор уже перестал быть только процессором в изначальном понимании этого слова и включал в себя контроллер памяти и другие части северного моста (NB), что в свое время позволило существенно упростить разводку материнских плат и снизить энергопотребление связки CPU+NB.

Работа с питанием также велась и в сторону рационального использования, когда тот или иной блок функционировал (читай - потреблял электричество) только в нужные моменты, а в периоды простоя отключался и не тратят попусту энергию. Одним из плодов работ в этом направлении стало появление в системах Intel наряду с состоянием S0 состояний S0ix, который значительно сокращал энергопотребление процессора в моменты простоя до состояния «спящей системы» (состояние S3, в него переходит ноутбук после захлопывания экрана в рабочем состоянии). Фактически, система могла «спать» абсолютно прозрачно для пользователя, так как переход в S0iх составляет 450 микросекунд, а пробуждение - 3,2 миллисекунды (0,00045 с и 0,0032 с соответственно). Для сохранения экрана в активном состоянии разработана технология PSR (Panel Self-Refresh), подразумевающая наличие буфера, хранящего несколько последних кадров. Это позволяет снижать нагрузку на графический процессор, особенно при нечастом обновлении информации на экране (например, при чтении текста), что, в свою очередь, дает возможность снизить энергопотребление графического процессора.

Новый процессор Intel умеет экономить энергию значительно лучше предшественников

Правда, для этого необходима аппаратная поддержка со стороны монитора, так что широкое применение этот способ энергосбережения может найти в мобильном сегменте, где «монитор» и «вычислительная часть» являются одним устройством. Но для демонстрации наработок Intel пример очень подходит, тем более что они нашли реализацию в процессорах на архитектуре Haswell. Так, блок PCU (Power Control Unit) в Haswell умеет очень эффективно использовать энергию за счет множества «режимов работы», в каждом из которых активны только необходимые сейчас блоки. Это, по заверениям Intel, позволило снизить энергопотребление в простое почти в пять раз по сравнению с прошлым (третьим) поколением процессоров, Переключение между «режимами» ускорено на четверть, что позволяет более активно управлять энергопотреблением ядер и «засыпать их» даже в тех случаях,которые в прошлом поколении были нецелесообразны из-за долгой процедуры включения/выключения. Тут ядро пару миллисекунд «поспало», сэкономим доли милливатта, там «вздремнуло»... Так и набираются сэкономленные ватты.

Внутренняя архитектура процессора также была серьезно доработана, хотя глобально ничего не изменилось. Intel продолжает шлифовать и дорабатывать кусками архитектуру, применявшуюся ещё в Conroe. Правда, различий между Ivy Bridge и Haswell куда больше, чем между Sandy Bridge и Ivy Bridge. Последний, по моему скромному мнению, вообще был рестайлингом для «Санди»; из существенных изменений можно отметить лишь переход с 32 нм на 22 нм техпроцесс.

Архитектура Intel Haswell в виде схемы

В процессорном блоке Haswell сохранился 14-19 ступенчатый конвейер, без изменений перешел и кэш на полторы тысячи микроинструкций, а вот блок декодирования инструкций теперь единый и не делится между двумя потоками. Размер блока Out-of-Order Window (OoO) увеличен со 168 до 192 записей, а в Reservation Station добавились два порта, увеличив общее число до восьми. В Sandy Bridge было шесть портов для параллельного выполнения шести микроопераций. Три из них используются для операций с памятью (чтение/запись), три - математическими операциями. Один добавленный порт используется для выполнения целочисленных математических операций и ветвления, а второй - для вычисления адреса.

Были переработаны блоки FMA (Fused Multiply-Add) в портах 0-1, а также добавлена поддержка набора инструкций AVX2 (Advanced Vector Extensions 2). Это позволяет значительно повысить производительность как при однотипной, так и при смешанной нагрузке, но все-таки более всего выросла скорость выполнения операций с плавающей точкой - Intel заявляет о двукратном повышении производительности.

Новые наборы инструкций - залог будущей эффективности

На практике можно ожидать прирост при работе с мультимедийным контентом и в 3D.

Новый блок FMA способен дать серьёзный выигрыш FLOPS за такт

Не остался без внимания и КЭШ. Скорость работы L1 и шины между L1 и L2 были увеличены вдвое, с 32 до 64 байт за цикл в обоих случаях; латентность осталась без изменений. Доработан универсальный TLB (Translation Lookaside Buffer): с 4К до расширенного 4К+2M, ширина шины увеличена вдвое. Доступ к КЭШу L3 теперь шире благодаря возможности обрабатывать запросы data и non data одновременно.

Блок TSX поможет распределить нагрузку между ядрами процессора

В Haswell был добавлен набор инструкций TSX (Transactional Synchronization eXtensions), позволяющий повысить скорость работы за счет «умного» оперирования теми данными, к которым одновременно обращаются несколько ядер. Это должно повысить эффективность работы процессора с теми задачами, которые трудно распараллелить, а также дает программистам возможность переложить часть работы по распределению нагрузки между ядрами на процессор. TSX, как и AVX2 - удобный инструмент для разработчиков, которые, умело оперируя им, могут добиться значительного роста быстродействия для своих приложений. По этой же причине мгновенного результата «здесь и сейчас» от этих новых наборов инструкций ждать не стоит.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!