Подключение RGB светодиода к Ардуино. RGB-светодиоды: как они работают, внутреннее устройство, как подключить, RGB-led и Arduino

Rgb светодиоды, которые иногда называют 3-хцветными, являются ничем иным, как красным, зеленым и синим диодом, совмещенными в едином корпусе. Зная об этом, несложно представить себе, как устроены rgb светодиоды. Для каждого из 3-х цветов существует своя ножка-катод, и ещё одна – общий анод. Вывод под анод является самым длинным, а катоды обычно располагаются в следующем порядке:

  • синий;
  • зеленый;
  • красный.

Чтобы заставить устройство светиться одним из указанных цветов, на соответствующий катод требуется подать сигнал. Если же нужен какой-то другой оттенок, его можно получить при использовании широтно-импульсной модуляции (ШИМ, PWM-сигнал). Количество получаемых в итоге цветов зависит от того, как реализовано управление и разрядности ШИМ. Белый цвет тоже довольно просто получить – для этого нужно лишь зажечь все светодиоды одновременно.

Rgb светодиоды могут иметь и другое строение, которое и определяет их основные характеристики (насколько они мощные и т.д.). В случае реализации устройства с общим катодом для каждого из цветов установлен собственный порог зажигания, отделенный от следующего парой вольт. Устройства с общим «+» включают нужный светодиод при значении «0» на выходе микроконтроллера, а с общим «-» - при «1».

Управление rgb светодиодами может быть реализована на 8-битных микроконтроллерах семейства Pic, AVR (ATtiny, ATmega) и более мощных моделях, программа для которых составляется на ассемблере.

По идее ножки микроконтроллеров должны быть рассчитаны на некую величину проходящего тока, но rgb светодиоды можно подключать через токоограничивающий резистор или pnp транзистор.

Управление rgb светодиодами

Управление светодиодами заключается в установке нужного значения их параметров. Для этого на выходы следует подавать прямоугольные импульсы определенной скважности, которые будут влиять на величину среднего тока, и, соответственно, средней яркости.

При недостаточной частоте импульсов светодиоды будут мигать. Чтобы они светили постоянно, нижний порог частоты должен быть около 60-70 Гц (мониторы старых моделей), а в идеале – не меньше 100 Гц (более мощные и современные).

При простейшей реализации управление RGB-светодиодом потребует 3 ШИМ. Сама схема не так сложна в реализации, даже если устройства довольно мощные. Задача скорее в правильной реализации программной части.

Контроллеры младших серий, как правило, не имеют не только 3 ШИМ, но даже 3-х таймеров с прерываниями (на базе которых легко реализовать ШИМ). То, как будет реализована схема управления, следует рассматривать на конкретных примерах, в зависимости от архитектуры конкретного устройства.

Теоретическая база для реализации схемы управления rgb светодиодами

Для начала следует вспомнить, что же такое ШИМ. Коротко, это режим работы устройства, при котором коэффициент заполнения (уровень сигнала) регулируется микросхемой по заданным алгоритмам.

Для реализации канала ШИМ нужно знать:

  • алгоритм определения коэффициента заполнения (устанавливается пользователем);
  • отсчет времени для сигнала верхнего уровня;
  • время всего импульса.

При практической реализации для этого потребуются 2 счетчика, которые будут работать по следующему алгоритму:

  1. Запуск счетчиков, выход выставлен в «1».
  2. Прерывание счетчика №1 (время верхнего уровня), выход переключается на «0».
  3. Счетчик №1 выключается.
  4. Прерывание счетчика №2 – повтор всех операций с начала.

Получается, что схема управления rgb светодиодом, вне зависимости от того, насколько устройства мощные, должна включать в себя по 2 счетчика для канала ШИМ, то есть 6 в сумме.

Даже если сделать длительность импульса одинаковой для всех каналов, их количество сократится на 2. У простых контроллеров никак не наберется 4 счетчика, но не стоит забывать, что отчет времени дискретен.

Здесь нужно подобрать квант времени, которому будут кратны длительности импульсов на каждом канале.

T=1/(f*(2 n -1)),

n – значение разрядности ШИМ;

f – частота.

Схема может включать в себя 1 счетчик для отсчета интервала Т. Чтобы он выполнял требуемую функцию, следует задать 4 установки:

  1. Количество отсчетов верхнего уровня для 1 канала ШИМ.
  2. Количество отсчетов верхнего уровня для 2 канала ШИМ.
  3. Количество отсчетов верхнего уровня для 3 канала ШИМ.
  4. Общая длительность импульса.

Прочие операции для программного счетчика (переключение, обнуление и т.д.) совершаются по прерываниям аппаратного.

Данный алгоритм – всего лишь пример схемы управления, работа которой может существенно отличаться, в зависимости от используемого микроконтроллера а также от того, как именно планируется использовать светодиоды. Более мощные устройства могут работать также на светодиодных лентах.

Продолжаем осваивать ШИМ, на этот раз для управления цветом RGB светодиода.

По сути, RGB светодиод совмещает в себе три обычных светодиода — красный, зеленый и синий.

Соответственно у RGB светодиода 4 ножки: для управления каждым из цветов используется по одной ножке и одна общая (обычно самая длинная). Общим может быть как катод(-), так и анод(+). На схеме приведен пример, для схемы с общим анодом.

Примечательно то, что смешивая эти 3 цвета можно получить практически любой другой цвет. Если зажечь все 3 светодиода одновременно, получится белый цвет.

Теперь о реализации, мне достался светодиод с общим катодом, номинальный ток, которого по даташиту составлял 20мА. Однако, есть небольшой нюанс, у каждого цвета свой порог зажигания. Например, у красного светодиода, 20мА соответствовало напряжению 2.1В, зеленому и синему — напряжение 3.2В. В целом ножка микроконтроллера должна выдерживать такой ток, поэтому можно смело подключать через токоограничивающие резисторы к микроконтроллеру.
Я же использовал pnp транзисторы, однако эту идею никому не навязываю.

У Atmega8 есть 3 канала ШИМ: два канала на таймере1(ножки PB.1 — OCR1A, PB.2 — OCR1B) и один таймере2(ножка PB.3 — OCR2). Регулируя заполнение ШИМ, мы регулируем напряжение на светодиоде, соответственно его яркость.

Создаем новый проект, настраиваем таймер2.

Так как OCR2 8-битный, а OCR1 10-битный, то максимальное значение OCR2=0хFF(255), а OCR1A/B=0х3FF(1023), т.е. в 4 раза больше. Учитываем эту особенность, поэтому чтобы каналы регулировались одинаково, настраиваем частоту таймера в 4 раза больше. Соответственно, максимальная яркость для OCR2 будет при 0xFF, а для OCR1 при 0x3FF.

Настраиваем ножки PB1-PB3 как выход. В основной цикл программы дописываем код, который плавно зажигает красный от 0 до 255, а затем плавно тушит его от 255 до 0.

while(OCR1A<0x3FF) { OCR1A++; delay_ms(2); } while(OCR1A>0x00) { OCR1A--; delay_ms(2); }

Результат:

Если нужно получить, некоторый определенный цвет, например пурпурный, открываем какой нибудь графический редактор, например Paint.net заходим в палитру нажимаем на понравившийся цвет, справа, где написано RGB отобразятся его числовые значения R=255, B=220.

Канал R у меня на OCR2, поэтому смело в OCR2 записываем 0xFF(255), канал B на OCR1A, но т.к. максимальное значение 1023, то по пропорции пересчитываем:

(220*1023)/255=882 вот его смело пихаем в OCR1A, результат довольно таки похож.

Выделенные цветовые зоны в спальне или гостиной – это всегда эстетично и красиво. Конечно, для того чтобы грамотно выполнить все работы по монтажу потолка, установке светодиодной ленты и всего сопутствующего оборудования, нужно немало потрудиться. Но зато результат будет радовать при правильном исполнении очень долго.

Ассортимент цветных светодиодных лент достаточно обширен и их правильный выбор – дело довольно сложное. И все же, какими бы идеальными они ни были, для их правильной работы необходим блок питания 12 В (реже 24 В) и, конечно же, блок управления с параметрами, подходящими именно под выбранную световую полосу.

Но что же такое этот RGB-контроллер, какие функции он выполняет? И если он так необходим, возможно ли его изготовить своими руками в домашних условиях?

Принцип работы

По своей сути контроллер RGB – это мозг домашней подсветки. Все команды, подаваемые с пульта дистанционного управления, им обрабатываются, а уже после нужный сигнал подается на светодиодную ленту, зажигая тот или иной цвет. Проще говоря, именно подобным электронным устройством осуществляется полное управление RGB-лентой.

Контроллеры различаются как по мощности, так и по количеству выходов, т. е. подключаемых к нему световых полос. Есть устройства с пультом, а бывают и без ПДУ. Также есть различие и по сигналу, поступающему на ленту, т. к. полоса может быть либо аналоговой, либо цифровой. Различие между ними существенное, а вот сходство одно. Все они работают только с блоком питания (трансформатором), потому как светодиодная полоса имеет номинальное напряжение в 12 В, а не 220, как думают некоторые.

Дело в том, что аналоговая светодиодная лента при получении сигнала с прибора управления зажигается тем или иным, но одним цветом по всей длине. У цифровой же есть возможность включения каждого светодиода отдельным цветом. А потому и RGB-контроллер для цифровой световой полосы более высокотехнологичен и стоимость его выше.

Варианты подключения

Естественно, что самым простым способом подключения устройства управления RGB станет вариант, при котором подключена лишь одна светодиодная полоса или ее часть. Но такой способ не совсем практичен, хотя он и не требует включения в цепь каких либо дополнительных приборов. Дело все в том, что на одну линию такого устройства возможно подключение не более 5–6 метров световой полосы, что для подсветки комнаты будет явно недостаточным. Если же длина отрезка будет больше, то на ближайшие к контроллеру светодиоды возрастет нагрузка, в результате чего они просто перегорят.

Еще одна проблема при подключении длинных светодиодных полос – большая нагрузка по мощности на тончайшие провода RGB-светодиодной ленты. При их нагреве пластиковое основание начинает плавиться, и в итоге жилы остаются без изоляции либо просто прогорают.

А потому при необходимости осветить более длинные расстояния применяются следующие способы и схемы подключения.

Две светодиодные ленты

При таком подключении к контроллеру для RGB-световой полосы понадобится два устройства питания и усилитель. Особенность подобного подключения в том, что отрезки ленты должны подключаться именно параллельно. Хотя у них и одно, общее электронное устройство управления, питание должно подаваться на каждую в отдельности. Усилитель же используется для более ясного и четкого света диодов.

Иными словами, напряжение поступает на оба блока питания, после чего с одного из них идет на усилитель и далее на световую полосу. Со второго блока питание поступает на электронный блок управления. Между собой устройство управления и усилитель связаны второй светодиодной лентой. Схематически такое подключение выглядит как на схеме выше.

При таком подключении желательно применять также два блока питания, но если они имеют большой выход мощности, то можно воспользоваться и одним.

Четыре отрезка по пять метров подключаются опять же параллельно. Пара полос напрямую подключена к контроллеру, вторая пара к нему же, но через усилитель сигнала. При подключении второго блока питания напряжение от него идет напрямую на усилитель. Выглядит подобное подключение примерно как на картинке выше.

Разобравшись с методами подключения контроллеров и их видами, можно попробовать сделать такой прибор своими руками в домашних условиях. Необходимо лишь помнить, что нужно соизмерять мощность устройства и его выходное напряжение с длиной и энергопотребляемостью светодиодной ленты.

Контроллер своими руками


Схема подобного прибора не сложна, единственный минус в том, что у изготовленного своими руками контроллера будет мало каналов, хотя для домашнего использования этого вполне достаточно.

Наверняка у каждого в квартире найдется неисправная китайская гирлянда с маленькой коробочкой – блоком управления устройством. Так вот, основные детали как раз будут браться из нее.

Схема контроллера, сделанного своими руками

Как раз внутри этого блока управления гирляндой можно увидеть три тиристорных выхода. Это и будут направления R, G и B.

Как раз к ним и следует подключить светодиодную полосу. Никакого охлаждения тиристорам не требуется, ну а отсутствие блока питания легко решается. Не будет большой проблемой найти неисправный системный блок компьютера. Так вот трансформатор от него идеально подойдет для этой цели. И в итоге сэкономить получится не только на покупке контроллера, но и на приобретении блока питания, причем блок питания может стоить в разы дороже, чем само устройство управления светодиодной RGB-лентой.

Конечно, никакого пульта дистанционного управления не будет, но все же можно подключить светодиодную RGB-ленту к трехклавишному выключателю, не потратив ни копейки на приобретение дополнительных устройств.

Стоит ли игра свеч?

Если рассуждать с точки зрения логики обычного человека, не увлеченного радиотехникой, то, конечно, купить дешевый RGB-контроллер будет ненамного дороже. К тому же при этом не будет потеряно время на изготовление своими руками подобного прибора. Но для настоящего радиолюбителя, а иногда и просто увлеченного человека, собрать подобный прибор самому во сто крат приятнее, нежели приобретать где-то. А потому попробовать изготовить RGB-контроллер своими руками стоит. Ведь удовольствие от проделанной, а к тому же еще и удачной работы не заменит ничто.

Мы не раз рассматривали разнообразные светодиоды, строение, использование и т.д. и т.п. Сегодня я хотел бы остановиться на одной из разновидностей светодиодов (если так можно говорить) - RGB светодиодах.

Что такое RGB светодиод и устройство


Соединение RGB диодов с ШИМ Altmega8

Аноды RGB светодиода подключаем к линиям 1,2,3 порта В, катоды соединяем с минусом. Чтобы получить разнообразные палитры цвета на аноды будем подавать ШИМ сигнал в определенной последовательности. В этом примере мы специально используем программный ШИМ, хотя на Atmega8 можно без проблем получить аппаратный ШИМ на 3 канала. Программный ШИМ можно использовать в случаях нехватки таймеров/счетчиков и по другим причинам. Для генерации ШИМ определенной частоты используем прерывание по переполнению 8-ми битного таймера Т0(TIMER0_OVF_vect). Так как предделитель не используем частота переполнения таймера будет равна 31250Гц. А если переменная "pwm_counter" считает до 163, то частота ШИМ будет равна 190 Hz. В обработчике прерываний исходя из значений в переменных pwm_r, pwm_g, pwm_b переключаются ножки порта В. Цветовые эффекты настраиваются с помощью функций, где задается время свечения светодиода. В тестовой программе сначала загораются красный, зеленый, синий, белый цвета, а потом начинается цикл с переходами цвета.

Программный код:

// Управление RGB светодиодом. Программный ШИМ

#include

#include

volatile char pwm_counter,pwm_r,pwm_g,pwm_b;

// Прерывание по переполнению Т0

ISR (TIMER0_OVF_vect)

if (pwm_counter++ > 163)

pwm_counter = 0;

if (pwm_counter > pwm_r) PORTB |= (1 << PB1);

if (pwm_counter > pwm_g) PORTB |= (1 << PB2);

if (pwm_counter > pwm_b) PORTB |= (1 << PB3);

// Процедура задержки в микросекундах

void delay_us(unsigned char time_us)

{ register unsigned char i;

for (i = 0; i < time_us; i++) // 4 цикла

{ asm (" PUSH R0 "); // 2 цикла

asm (" POP R0 "); // 2 цикла

// 8 циклов = 1 us для 8MHz

// Процедура задержки в миллисекундах

void delay_ms(unsigned int time_ms)

{ register unsigned int i;

for (i = 0; i < time_ms; i++)

{ delay_us(250);

// Красный цвет

void red (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a; //увеличение

for (char a = 0; a < 165; a++)

pwm_r = a; //уменьшение

// Зеленый цвет

void green (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_g = 164 - a;

for (char a = 0; a < 165; a++)

// Синий цвет

void blue (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Белый цвет

void white (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_r = 164 - a;

pwm_g = 164 - a;

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

// Переход цветa

void rgb (unsigned int time)

for (char a = 0; a < 165; a++)

pwm_b = 164 - a;

for (char a = 0; a < 165; a++)

В этой статье будут рассмотрены практические механизмы формирования и изменения параметров цвета светодиодного светильника, проблемы при этом возникающие и способы их решения. Все, что описано в статье – это мой опыт работы со светом при реализации проекта .

Как формируется цвет при помощи светодиодов.

Начнем с самого начала — определимся, как формируется цвет, вообще, в жизни (все знают, но на всякий случай …). Любой оттенок цвета формируется при помощи трех основных цветов. В нашем случае, когда цвет формируют источники света (аддитивный синтез) – это:
— R red красный
— G green зеленый
— B blue синий

Комбинируя всего три основных цвета в разных пропорциях можно получить любой оттенок цвета. Следующую картинку, наверное, видел каждый – она и передает суть вышесказанного

Соответственно, для того чтобы светильник смог сформировать любой оттенок цвета, он тоже должен иметь, как минимум, три источника основных цветов. На практике так и есть. Например, любой RGB-светодиод – это, по факту, три отдельных светодиода (излучающих кристалла) в одном корпусе.

Для управления RGB-светодиодом микроконтроллер должен отдельно управлять каждым из трех основных цветов и иметь три отдельных выхода для каждого цвета.

Управляя светодиодами при помощи цифрового сигнала (включен/отключен) можно получить всего 7 цветов:
— три основных цвета (когда засвечен только один основной цвет)
— три составных цвета (когда засвечено по два основных цвета)
— белый цвет (засвечены все три основных цвета)

Для того чтобы получить множество цветовых оттенков, нужно управлять интенсивностью свечения каждого из основных цветов. Для управления интенсивностью свечения применяется широтно-импульсная модуляции цифрового сигнала (ШИМ или PWM). Изменяя скважность сигнала, для глаза создается иллюзия изменения яркости свечения светодиода. Чтобы глаз не замечал переключений светодиода, частота ШИМ-сигнала должна быть не менее 50-60Гц.

Так как в светильнике три источника излучения, соответственно, светильником нужно управлять тремя ШИМ-сигналами R, G, B. Каждый уровень ШИМ (и яркость светильника) – это определенное значение скважности сигнала.

Чаще всего значение скважности задается числом размером в байт – 8 бит (и мы будет использовать байт). Это 256 градаций каждого из основных цветов и 256*256*256=16777213 оттенков цветов вообще. На самом деле — это не совсем так – ниже я расскажу почему.

Из вышесказанного приходим к тому, что МК должен для светодиодного светильника формировать три ШИМ-сигнала частотой выше 60 Гц и с разрешающей способностью 256 значений (8 бит).

Применяя микроконтроллеры AVR (как, впрочем, и любые другие) – это не является проблемой, так как в большинстве из них есть достаточное количество аппаратных 8-ми битных ШИМ формирователей (таймеров), которые минимально расходуя ресурсы МК могут обеспечить любую частоту формирования ШИМ, вплоть до десятков килогерц. В случае применения программных формирователей ШИМ – количество таких формирователей можно увеличить до количества свободных ножек у МК (частота формирования ШИМ, в этом случае, возможна до нескольких килогерц).

Параметры регулирования LED-светильника.

Определимся с параметрами цвета, которые нам-бы хотелось изменять. Раз мы имеем три значения скважности для основных цветов R, G, B, логично было-бы регулировать именно эти три параметра — то есть интенсивности красной, зеленой и синей составляющей цвета. На практике — это не очень правильный подход, так как не позволяет комфортно выбрать цвет нашего светильника. Например, для того чтобы сделать яркость светильника меньше оставив цвет свечения прежним. Нужно провернуть сразу три регулятора, еще и на разный угол. Фактически, каждое изменение (подстройка) нашего светильника будет выглядеть как настройка его с нуля. Гораздо естественней регулировать яркость (или какой либо другой параметр) одним регулятором.

Вообще, существует множество систем регулирования (выбора цвета) для различных применений

Система RGB — это одна из них, с тремя регуляторами для каждого из основных цветов, как описано выше.

Системы XYZ , LAB и другие, нам не очень подходят.

Наиболее естественно изменяет (задает) параметры освещения — система HS B (и подобные ей HSL, HSV). В HSB палитра цветов формируется путем установки различных значений базовых параметров:

Hue (оттенок цвета). Задается в градусах от 0 до 360. 0 – красный цвет. 120 – зеленый, 240 – синий. Все что между ними – смешение основных цветов.
Мы будем использовать значение Hue размером в байт (от 0 до 255) .
0 – красный цвет. 85 – зеленый, 170 – синий.

Saturation (насыщенность). Задается в процентах от 0 до 100. 100 – это максимальная насыщенность цвета. При уменьшении к нулю – это потеря цвета вплоть до серого.
Мы будем использовать значение Saturation размером в байт (от 0 до 255).

Brightness (яркость). Задается в процентах от 0 до 100. 100 – это максимальная яркость цвета (но не белый цвет!). При уменьшении к нулю – это потеря яркости вплоть до черного.
Мы будем использовать значение Brightness размером в байт (от 0 до 255).

Если использовать эту систему при регулировке цвета, то получается все очень удобно. Крутим один регулятор – меняем цветовой тон (оставаясь в той-же яркости), крутим другой – меняем яркость (не меняя цвета) – здорово! Но есть у системы и недостатки. Первый — храня значения в переменных размером в байт, мы теряем часть информации о цвете (например, для хранения всех возможных вариантов для цветового тона нужно 768 значений, а мы все это пытаемся уложить в 256 значений). Второй – все равно, в итоге, конечное значение должно быть в системе RGB для вывода ШИМ-сигналов на светодиоды. И третий – в случае, когда нужно будет еще какое либо преобразование – это будет гораздо сложнее сделать с системой HSB, чем с RGB.

В устройстве AAL я решил реализовать различные преобразования следующим образом:
1 Информация о цвете хранится в трех байтах R_ base, G_ base, B_ base (система RGB). Я назвал это значение базовым. Оно хранит информацию о цвете без потерь.
2 Для преобразований используется значение величины преобразования (сдвига) Shift размером в байт.
3 Нужное преобразование осуществляется в соответствующих процедурах, исходными данными для которых служат базовое значение цвета R_base, R_base, R_base и величина соответствующего преобразования Shift. На выходе мы получаем три значения в системе RGB (R_ shift, G_ shift, B_ shift ), которые выдаются на светодиоды в виде ШИМ-сигналов.

При такой схеме, нам удобно управлять различными параметрами света и мы сохраняем максимально точно информацию о начальном (базовом) цвете.

Реализация преобразований цвета в микроконтроллере.

Проблема реализации управления цветом в микроконтроллере заключается в том, что для подавляющего большинства преобразований требуется умножение байта на дробный коэффициент преобразования (число от 0 до 1).
Например, уменьшение яркости вдвое:
R_shift = R_base * 0,5
G_shift = G_base * 0,5
B_shift = B_base * 0,5

С целочисленным умножением в AVR-микроконтроллерах все прекрасно (8-ми битное умножение осуществляется одним оператором всего за 2 такта — до 10 миллионов умножений в секунду!), а вот если мы перейдем в систему чисел с плавающей запятой – это будет на пару порядков медленнее и очень громоздко. В случаях, где нужны будут быстрые пересчеты большого количества значений, микроконтроллер просто не будет успевать.
Еще хуже дело с делением (это как вариант уйти от дробного умножения) — аппаратного его просто нет. Программная реализация деления тоже довольно громоздка.

В идеале, все преобразования цвета желательно реализовать при помощи целочисленного умножения, сдвигов бит, сложения и вычитания. Деление вообще не желательно применять.
Вот этим мы сейчас и займемся!

Проблема умножения на дробный коэффициент решается очень просто! Если в качестве коэффициента использовать значение размером в байт (0 – 255), принимая максимальное значения байта (255) за единицу, то можно обойтись только целочисленным умножением.

0 ~ 0/255 = 0
10 ~ 10/255 = 0,04
128 ~ 128/255 = 0,5
255 ~ 255/255 = 1

Теперь, предыдущий пример будет выглядеть следующим образом:
R_shift = (R_base * 128) / 255
G_shift = (G_base * 128) / 255
B_shift = (B_base * 128) / 255

После умножения двух 8-ми битных значений (R_base*128) мы получаем 16-ти битный результат (два байта). Откидывая младший байт и используя только старший — мы осуществляем деление значения на 256.
Деля на 256 , вместо положенных 255 , мы вносим в результат небольшую погрешность. В нашем случае, когда результат используется для формирования яркости посредством ШИМ, погрешностью можно пренебречь, так как она не будет заметна для глаз.

В ассемблере реализация такого способа умножения на коэффициент элементарна и трудностей не вызовет (всего пара операторов). В языках высокого уровня, нужно позаботиться о том, чтобы компилятор не стал создавать избыточный код.

Переходим к самим преобразованиям.

Напомню, в любом преобразовании участвуют:
— базовый цвет, заданный тремя переменными R_base, G_base, B_base (размер Byte)
— коэффициент преобразования Shift (размер Byte)

Результат:
— «сдвинутый» цвет, в виде трех значений R_shift, G_shift, B_shift (размер Byte)

Записи формул ниже могут показаться странными, но я их прописывал таким образом, чтобы, во-первых, было видно последовательность действий, во-вторых, максимально упростить действия, сводя все к 8-битному умножению, сложению, вычитанию и сдвигу бит.

Яркость (Brightness)

— самое простое преобразование.
При:
Shift=0 светодиод погашен
Shift=255 светодиод горит базовым цветом.
Все промежуточные значения Shift – это затемнение базового цвета.

R_shift = (R_base * Shift) / 256
G_shift = (G_base * Shift) / 256
B_shift = (B_base * Shift) / 256

* напоминаю, деление на 256 — это просто откидывание младшего байта результата целочисленного умножения 2-х байт.

Осветление (Tint)

— эта величина не входит в систему HSB, но ее удобно использовать в регулировках. Tint – это, своего рода продолжение регулировки яркости в белый цвет.
При:
Shift=0 – светодиод горит базовым цветом
Shift=255 – светодиод горит белым цветом
Все промежуточные значения Shift – это осветление базового цвета.

R_shift = (R_base*(255 — Shift)) / 256 + Shift
G_shift = (G_base*(255 — Shift)) / 256 + Shift
B_shift = (B_base *(255 — Shift)) / 256 + Shift

* коэффициент (255 — Shift) можно реализовать одним оператором – битовой инверсией (конечно, при условии, что Shift — это Byte|Char)

Светимость (Lightness)

— эта величина тоже не входит в систему HSB. Регулировка осуществляется от выключенного светодиода, через базовый цвет и к белому цвету.
При:
Shift=0 – светодиод погашен
Shift=128 – светодиод горит базовым цветом
Shift =255 – светодиод горит белым цветом.

Реализуется посредством двух предыдущих преобразований.
При Shift < 128 применяем Brightness c Shift(for Brightness) = Shift*2
При Shift >=128 применяем Tint c Shift(for Tint) = (Shift-128)*2

Насыщенность (Saturation)

— цветность — переход от серого к цветному
При:
Shift=0 – светодиод горит белым цветом с яркостью, равной среднему значению базового цвета
Shift=255 – светодиод горит базовым цветом
Все промежуточные значения Shift – это «потеря» цвета.

RGB_average= ((R_base + B_base)/2 + G_base) / 2

* правильней, конечно, так (R_base + G_base + B_base)/3, но придется делить на 3, а это сдвигом не сделаешь

R_shift = (R_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256
G_shift = (G_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256
B_shift = (B_base * Shift) / 256 + (RGB_average * (255 — Shift)) / 256

Изменение тона (Hue)

Круговое изменение оттенка цвета.
Сложное преобразование, которое отличается в каждой из трех зон значений Shift
К примеру, если базовый цвет красный, то при:
Shift=0 – светодиод светится красным
Shift=85 – светодиод светится зеленым
Shift=170 – светодиод светится синим
Shift=255 – светодиод снова светится красным

При Shift < 86:
Shift_a= Shift * 3
R_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256
G_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256
B_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256

При Shift > 85 and Shift < 171:
Shift_a= (Shift-85) * 3
R_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256
G_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256
B_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256

При Shift > 170:
Shift_a= (Shift-170) * 3
R_shift = (R_base * Shift_a) / 256 + (B_base * (255 — Shift_a)) / 256
G_shift = (G_base * Shift_a) / 256 + (R_base * (255 — Shift_a)) / 256
B_shift = (B_base * Shift_a) / 256 + (G_base * (255 — Shift_a)) / 256

Инверсия (Inversion)

— представляет собой переход от одного цвета к его инверсному варианту. Например, инверсный цвет для красного – это голубой.
Shift=0 – светодиод светится базовым цветом
Shift=128 – светодиод горит белым (серым) цветом – средняя точка инверсии
Shift=255 – светодиод светится цветом инверсным базовому
Все промежуточные значения Shift – это плавные переходы между цветами.

R_shift = ((255 — R_base) * Shift) / 256 + (R_base * (255 — Shift)) / 256
G_shift = ((255 — G_base) * Shift) / 256 + (G_base * (255 — Shift)) / 256
B_shift = ((255 — B_base) * Shift) / 256 + (B_base * (255 — Shift)) / 256

Пока это все параметры, которые я надумал регулировать. Если придумаю еще чего интересно, то добавлю сюда позже.

Осталась еще одна проблема, которую хотелось бы затронуть в разрезе этой статьи –

Нелинейность восприятия ШИМ человеческим глазом

Оказывается, что человеческий глаз воспринимает яркость свечения светодиода нелинейно. Эта проблема давно известна и с разной степенью успешности ее решают производители разного оборудования. Есть исследования и экспериментальные формулы. Вот, например, график зависимости из .

Из графика видно, что в начальных областях регулирования, яркость нам кажется в три раза больше чем измеренная прибором.

То есть, если этот фактор не учитывать, то крутя условную ручку регулятора, мы все изменения получим за первую половину оборота, а вторая половина фактически не будет заметно изменять текущего состояния.

Именно из-за эффекта нелинейности я выше писал о том, что, по факту, 3х-байтный (24битный) цвет совсем не дает те 16 миллионов оттенков, как любят писать многие производители. Полноценных оттенков, в лучшем случае, будет на порядок меньше.

Как решить проблему нелинейность восприятия ШИМ человеческим глазом?
В идеале, нужно использовать одну из экспериментально выведенных формул, но, часто, они слишком сложные для вычисления в микроконтроллере.
Еще, можно создать таблицу значений для пересчета ШИМ (уменьшив время вычислений, но пожертвовав частью памяти МК).
В нашем случае, когда нет необходимости в большой точности передачи нюансов яркости, можно применить упрощенную формулу, так называемой, мощности излучения:

R_PWM = (R_shift * R_shift) / 256
G_PWM = (G_shift * G_shift) / 256
B_PWM = (B_shift * B_shift) / 256

* умножаем значение само на себя и откидываем младший байт результата.

Вот это, наверное, и все, о чем я Вам хотел рассказать по LED цвету. Все преобразования, описанные в статье, реализованы мною в устройстве AAL. Кроме того, я сделаю отдельный модуль Color в Демонстрацию алгоритмов на RGB-светодиоде и WS2812-пикселе можно посмотреть .

(Visited 10 683 times, 1 visits today)



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!