Последовательный интерфейс SATA. Какие бывают разъемы жестких дисков

Собирая компьютер или меняя его комплектующие, пользователь часто сталкивается с огромным количеством интерфейсов. Сразу с ними разобраться не просто, так как их, во-первых, очень много, во-вторых, они имеют некоторые разновидности. Отсюда часто возникают вопросы, что такое SATA или ATA? Вместе с этим важно также понимать виды этого интерфейса, различия и задачи.

Интерфейс

Прежде чем разобраться с тем, что такое SATA, нужно кратко объяснить, что же такое интерфейс. Это элемент взаимодействия, который состоит из сигнальных линий, контроллера и набора правил.

Любой кабель системы компьютера взаимодействует с устройством и материнской платой. Один конец интерфейса подключается к определенному оборудованию, а другой - к разъему на платформе.

Обмен данными

Что такое SATA? Этот интерфейс имеет последовательный обмен данными с устройствами, накапливающими информацию. Если говорить на примере, то в данный момент SATA используется для подключения жесткого диска к материнской плате.

Этот интерфейс с некоторых пор стал универсальным, поскольку учел ошибки прошлых изобретений и оказался наиболее подходящим для подключения винчестера к системе.

SATA имеет разъем на 7 пинов, в то время как его предшественник PATA имел 40 пинов. В связи с этим, размер интерфейса значительно уменьшился, что повлекло и уменьшение сопротивления воздуха. Таким образом, намного проще стало организовывать систему охлаждения, а воздух, разгоняемый ее кулерами, стал доставать до всех элементов питания.

Еще одной положительной чертой SATA-кабеля стала его устойчивость к многократному подключению. Производители позаботились о том, чтобы питающий шнур имел качественные и крепкие материалы.

Еще одним изменением стал принцип подключения кабелей. Ранее, когда был популярен PATA-интерфейс, подключение осуществлялось попарно. Одним шлейфом можно было объединить два устройства. Сейчас же каждое комплектующее подключается одним кабелем.

Такое изменение повлияло на технологию совместной работы оборудования. Кроме того, значительно уменьшились проблемы при комплектации системы, исчезли неполадки при применении нетерминированных шлейфов.

Вариации

С тех пор, как мир узнал что такое SATA, этот интерфейс пережил два поколения. Кроме того, у него появилось огромное количество модификаций для разных устройств. Среди основных типов выделяется 1, 2 и 3 ревизии. Также SATA обзавелся множеством модификаций и переходников.

Первая ревизия

Впервые HDD SATA появился в 2003 году. Это была первая попытка создать интерфейс. Шина работала на скорости 1500 МГц. При этом пропускная способность не превышала 150 Мбайт/с. Так многие сравнивали эту ревизию с Ultra ATA, которая имела незначительно меньшие показатели скорости передачи данных.

Все же можно выделить и некоторые новшества. Во-первых, последовательная шина сменила параллельную. Во-вторых, это повлекло за собой и функционирование на более высоких скоростях. В-третьих, отпала проблема синхронизации каналов. Такое изобретение стало революционным в компьютерной технологии.

Вторая ревизия

SATA 2 не заставил себя долго ждать и появился в обновленном формате. Он стал работать на частоте 3000 МГц. При этом пропускная способность была равна 300 Мбайт/с нетто. Когда производители других механизмов разглядели в этом интерфейсе потенциал, они начали применять его в своих новинках. В итоге, первой в производстве новых девайсов оказалась компания Nvidia, которая применила этот интерфейса в чипсете.

Новинка должна была работать с предыдущей ревизией SATA. Но многие пользователи столкнулись с тем, что в некоторых устройствах и контроллерах необходимо было ручное вмешательство в режимы работы. Так некоторые производители внедрили специальные перемычки для переключения между SATA 1 и SATA 2.

Третья ревизия

SATA 3 также не заставил себя долго ждать и появился уже в 2008 году. Это ревизия обзавелась пропускной способностью в 6 Гбит/с брутто. Помимо того, что новый интерфейс стал работать быстрее, появилось и улучшенное управление питанием. Учитывая ошибки прошлых ревизий, разработчики продумали совместимость всех ранее выпущенных интерфейсов этой серии.

SATA III позже была доработана. Так появилось еще два типа.

SATA Revision 3.1 получила довольно много существенных и не очень изменений. К примеру, появился вариант mSATA для мобильных аппаратов. С новой технологии Zero-power интерфейс перестал требовать энергию в спящем режиме. Также улучшилась производительность твердотельных накопителей, снизилась общая энергия потребления, также появились возможности хост-идентификации.

Далее последовала SATA Revision 3.2. Обычно эту версию также называют Express. В целом, этот интерфейс взаимодействовал с классическим SATA, но несущим интерфейсом в этом случае стал PCI Express, что понятно из названия. Это все повлекло к изменениям в конструкции порта. Новинка получила два расположенных в длину SATA-порта, которые позволили подключать как винчестеры, так и накопители, работающие с SATA Express. Один из разъемов работал при скорости 8 Гбит/с, а второй - 16 Гбит/с.

Вместе с этой ревизией стала известна модификация micro SSD. Она была разработана специально для встроенных накопителей небольшого размера.

«Горячая замена»

Устройства развивались, а вместе с ними появлялись новые вариации интерфейсов. Чуть позже первой ревизии SATA на рынке появился вариант eSATA. Этот интерфейс предполагал подключение оборудования в режиме «горячей замены».

Что это за режим? «Горячая замена» позволяет включать или отключать устройство к системе, которая может при этом беспрерывно работать. В этом случае не нужно отключать компьютер, чтобы подключить к нему ЖД.

Вариант eSATA обзавелся своими особенностями:

  • Интерфейс оказался менее хрупким, а также мог иметь большее число подключений, чем SATA. Проблема была лишь в том, что оба интерфейса оказались несовместимы.
  • Требовал подключения двух кабелей.
  • Длина провода увеличилась. Это было сделано для того, чтобы компенсировать потери изменения уровня сигналов.
  • Показатели скорости передачи были выше средних значений.

Чтобы использовать данный разъем, в операционной системе Windows необходимо было включить особый режим. Для этого нужно было перейти в BIOS и выбрать Advanced Host Controller Interface.

В этом случае многие пользователи столкнулись с такой проблемой, что операционная система могла перестать загружаться. Но это было лишь в момент популярности Windows XP, который подключался к контроллеру с режимами ATA. Сейчас это проблема совсем не актуальна, поскольку данная операционная система практически не используется, а в новых такой проблемы нет.

Модификация eSATA

Изначально связывали SATA с жестким диском. Но многие разработчики принялись создавать модифицированные версии. Так появился Power eSATA. Этот вариант объединял eSATA и USB. Интерфейс позволял одновременно использовать кабель Power Over eSATA и подключать накопитель без каких-либо переходников.

Мини-версия

У классического интерфейса SATA также появились свои модификации. В 2009 году стал известен разъем Mini-SATA. Сейчас его определяют как форм-фактор для твердотельных накопителей, которые имеют уменьшенный разъем относительно жестких дисков.

Mini-SATA работает в ноутбуках и других устройствах, которые функционируют с небольшими SSD-дисками. Скорее всего, mSATA появился от интерфейса PCI Express Minin Card. Оба разъема электрически совместимы, но имеют разницу в сигналах.

Переходники SATA

Глядя на широкое разнообразие вариаций SATA и разных его модификаций, становится понятно, что для всего этого добра необходимо покупать переходники. Конечно, адаптеры нужны не всегда. Но есть устройства, которые имеют устаревший тип подключения и требуют соответствующего интерфейса.

Самым популярным адаптером считается SATA на IDE и наоборот. Поскольку IDE является устаревшей версией, то потребность в переходниках практически отпала. Раньше этот вопрос был актуален, поскольку многие устройства, и материнские платы в том числе, работали с ATA. Сейчас же все оборудование работает на разных ревизиях SATA (преимущественно на третьей), поэтому не требует адаптеров.

Вопрос о переходниках может быть актуальным в случае более современных интерфейсов. Так, некоторые пользователи ищут адаптер mSATA-M.2 или USB-SATA.

Адаптеры найти просто. Особенно их много в популярных китайских интернет-магазинах. Кстати, именно там чаще всего и заказывают подобные механизмы.

Выводы

SATA-разъем имеет долгую историю. Он развивается и с каждым годом обзаводится новыми модификациями, которые оказываются намного быстрее и эффективнее. Как и любой другой интерфейс, предполагается, что этот вскоре будет заменен на еще одну свою улучшенную версию, которая появится с увеличенной скоростью передачи данных.

На данный момент самым распространенным интерфейсом является . SATA хоть и можно встретить в продаже, однако интерфейс уже считается устаревшим, к тому же уже начали поступать с .

Не стоит путать с SATA 3,0 Гбит/с, во втором случае речь идет об интерфейсе SATA 2, который имеет пропускную способность равную до 3,0 Гбит/с (у SATA 3 пропускная способность равна до 6 Гбит/с)

Интерфейс — устройство, передающее и преобразующее сигналы, от одного компонента оборудования к другому.

Виды интерфейса. PATA, SATA, SATA 2, SATA 3 и тд.

Накопители различных поколений использовали такие интерфейсы: IDE (ATA), USB, Serial ATA (SATA), SATA 2, SATA 3, SCSI, SAS, CF, EIDE, FireWire, SDIO и Fibre Channel.

IDE (АТА — Advanced Technology Attachment) — параллельный интерфейс подключения накопителей, именно поэтому был изменен (с выходом SATA ) на PATA (Parallel ATA). Раньше использовался для подключения винчестеров, но был вытеснен интерфейсом SATA. В настоящее время используется для подключения оптических накопителей.

SATA (Serial ATA) — последовательный интерфейс обмена данными с накопителями. Для подключения используется 8-pin разъем. Как и в случае с PATA – является устаревшим, и используется только для работы с оптическими накопителями. Стандарт SATA (SATA150) обеспечивал пропускную способность равную 150 МБ/с (1,2 Гбит/с).

SATA 2 (SATA300) . Стандарт SATA 2 увеличивал пропускную способность в двое, до 300 МБ/с (2,4 Гбит/с), и позволяет работать на частоте 3 ГГц. Стандартны SATA и SATA 2 совместимы между собой, однако для некоторых моделей необходимо вручную устанавливать режимы, переставляя джамперы.

Хотя про требованию спецификаций правильно называть SATA 6Gb/s . Этот стандарт в двое увеличил скорость передачи данных до 6 Гбит/с (600 МБ/с). Также к положительным нововведениям относится функция программного управления NCQ и команды для непрерывной передачи данных для процесса с высоким приоритетом.

Хоть интерфейс и был представлен в 2009 году, особой популярностью у производителей он пока не пользуется и в магазинах встречает не так часто. Кроме жестких дисков этот стандарт используется в SSD (твердотельные диски).

Стоит заметить, что на практике пропускная способность интерфейсов SATA не отличаются скоростью передачи данных. Практически скорость записи и чтения дисков не превышает 100 Мб/с. Увеличение показателей влияет только пропускную способность между контроллером и накопителя.

SCSI(Small Computer System Interface) — стандарт применяется в серверах, где необходима повышеная скорость передачи данных.
SAS (Serial Attached SCSI) — поколение пришедшее на смену стандарта SCSI, использующее последовательную передачу данных. Как и SCSI используется в рабочих станциях. Полностью совместив с интерефейсом SATA.
CF (Compact Flash) — Интерфейс для подключения карт памяти, а также для 1,0 дюймовых винчестеров. Различают 2 стандарта: Compact Flash Type I и Compact Flash Type II, отличие в толщине.

FireWire – альтернативный интерфейс более медленному USB 2.0. Используется для подключения портативных . Поддерживает скорость до 400 Мб/с, однако физическая скорость ниже, чем у обычных. При чтении и записи максимальный порг 40 Мб/с.

Жёсткий диск - простая и маленькая "коробочка" с виду, хранящая огромные объёмы информации в компьютере любого современного пользователя.

Именно таковой она кажется снаружи: достаточно незамысловатой вещицей. Редко кто при записи, удалении, копировании и прочих действий с файлами различной важности задумывается о принципе взаимодействия жёсткого диска с компьютером. А если ещё точнее - непосредственно с самой материнской платой.

Как эти компоненты связаны в единую бесперебойную работу, каким образом устроен сам жесткий диск, какие разъемы подключения у него есть и для чего каждый из них предназначен - это ключевая информация о привычном для всех устройстве хранения данных.

Интерфейс HDD

Именно этим термином можно корректно называть взаимодействие с материнской платой. Само же слово имеет гораздо более широкое значение. К примеру, интерфейс программы. В этом случае подразумевается та часть, которая обеспечивает способ взаимодействия человека с ПО (удобный «дружелюбный» дизайн).

Однако же интерфейс интерфейсу рознь. В случае с HDD и материнской платой он представляет не приятное графическое оформление для пользователя, а набор специальных линий и протоколов передачи данных. Друг к другу эти компоненты подключаются при помощи шлейфа - кабеля со входами на обоих концах. Они предназначены для соединения с портами на жёстком диске и материнской плате.

Иными же словами, весь интерфейс на этих устройствах - два кабеля. Один подключается в разъем питания жесткого диска с одного конца и к самому БП компьютера с другого. А второй из шлейфов соединяет HDD с материнской платой.

Как в былые времена подключали жёсткий диск - разъем IDE и другие пережитки прошлого

Самое начало, после которого появляются более совершенные интерфейсы HDD. Древний по нынешним меркам появился на рынке примерно в 80-х годах прошлого столетия. IDE дословно в переводе означает «встроенный контроллер».

Будучи параллельным интерфейсом данных, его ещё принято называть ATA - Однако стоило со временем появиться новой технологии SATA и завоевать гигантскую популярность на рынке, как стандартный ATA был переименован в PATA (Parallel ATA) во избежание путаниц.

Крайне медленный и совсем уж сырой по своим техническим возможностям, этот интерфейс в годы своей популярности мог пропускать от 100 до 133 мегабайта в секунду. И то лишь в теории, т. к. в реальной практике эти показатели были ещё скромнее. Конечно же, более новые интерфейсы и разъемы жестких дисков покажут ощутимое отставание IDE от современных разработок.

Думаете, не стоит преуменьшать и привлекательных сторон? Старшие поколения наверняка помнят, что технические возможности PATA позволяли обслуживать сразу два HDD при помощи только одного шлейфа, подключаемого к материнской плате. Но пропускная способность линии в таком случае аналогично распределялась пополам. И это уже не упоминая ширины провода, так или иначе препятствующую своими габаритами потоку свежего воздуха от вентиляторов в системном блоке.

К нашему времени IDE уже закономерно устарел как в физическом, так и в моральном плане. И если до недавнего времени этот разъём встречался на материнских платах низшего и среднего ценового сегмента, то теперь сами производители не видят в нём какой-либо перспективы.

Всеобщий любимец SATA

На длительное время IDE стал наиболее массовым интерфейсом работы с накопителями информации. Но технологии передачи и обработки данных долго на месте не застаивались, предложив вскоре концептуально новое решение. Сейчас его можно встретить практически у любого владельца персонального компьютера. И название ему - SATA (Serial ATA).

Отличительные особенности этого интерфейса - параллельная низкое энергопотребление (сравнительно с IDE), меньший нагрев комплектующих. За всю историю своей популярности SATA пережил развитие в три этапа ревизий:

  1. SATA I - 150 мб/c.
  2. SATA II - 300 мб/с.
  3. SATA III - 600 мб/с.

К третьей ревизии также была разработана пара обновлений:

  • 3.1 - более усовершенствованная пропускная способность, но всё так же ограниченная лимитом в 600 мб/с.
  • 3.2 со спецификацией SATA Express - успешно реализованное слияние SATA и PCI-Express устройств, позволившее увеличить скорость чтения/записи интерфейса до 1969 мб/с. Грубо говоря, технология является «переходником», который переводит обычный режим SATA на более скоростной, которым и обладают линии PCI-разъёмов.

Реальные же показатели, разумеется, явно отличались от официально заявленных. В первую очередь это обуславливает избыточная пропускная способность интерфейса - многим современным накопителям те же 600 мб/с излишне, т. к. они изначально не разработаны для работы на такой скорости чтения/записи. Лишь с течением времени, когда рынок постепенно будет полниться высокоскоростными накопителями с невероятными для сегодняшнего дня показателями скорости работы, технический потенциал SATA будет задействован в полном объёме.

И наконец, были доработаны многие физические аспекты. SATA рассчитан на использование более длинных кабелей (1 метр против 46 сантиметров, которыми подключались жесткие диски с разъемом IDE) с гораздо компактными размерами и приятным внешним видом. Обеспечена поддержка «горячей замены» HDD - подключать/отсоединять их можно и без отключения питания компьютера (правда, предварительно всё же необходимо активировать режим AHCI в BIOS).

Возросло и удобство подключения шлейфа к разъёмам. При этом все версии интерфейса обратно совместимы друг с другом (жёсткий диск SATA III без проблем подключается к II на материнской плате, SATA I - к SATA II и т. д.). Единственный нюанс - максимальная скорость работы с данными будет ограничена наиболее «старым» звеном.

Обладатели старых устройств также не останутся в стороне - существующие переходники с PATA на SATA переменно спасут от более дорогостоящей покупки современного HDD или новой материнской платы.

External SATA

Но далеко не всегда стандартный жёсткий диск подходит под задачи пользователя. Бывает необходимость в хранении больших объёмов данных, которым требуется использование в разных местах и, соответственно, транспортировка. Для таких случаев, когда с одним накопителем приходится работать не только лишь дома, и разработаны внешние жёсткие диски. В связи со спецификой своего устройства, им требуется совсем другой интерфейс подключения.

Таковым является ещё разновидность SATA, созданной под разъемы внешних жестких дисков, с приставкой external. Физически этот интерфейс не совместим со стандартными SATA-портами, однако при этом обладает аналогичной пропускной способностью.

Присутствует поддержка «горячей замены» HDD, а длина самого кабеля увеличена до двух метров.

В изначальном варианте eSATA позволяет лишь обмениваться информацией, без подачи в соответствующий разъем внешнего жесткого диска необходимой электроэнергии. Этот недостаток, избавляющий от необходимости использования сразу двух шлейфов для подключения, был исправлен с приходом модификации Power eSATA, совместив в себе технологии eSATA (отвечает за передачу данных) с USB (отвечает за питание).

Универсальная последовательная шина

Фактически став наиболее распространённым стандартом последовательного интерфейса подключения цифровой техники, Universal Serial Bus в наши дни известен каждому.

Перенеся долгую историю постоянных крупных изменений, USB - это высокая скорость передачи данных, обеспечение электропитанием беспрецедентное множество периферийных устройств, а также простота и удобство в повседневном использовании.

Разрабатываемый такими компаниями, как Intel, Microsoft, Phillips и US Robotics, интерфейс стал воплощением сразу нескольких технических стремлений:

  • Расширение функционала компьютеров. Стандартная периферия до появления USB была достаточно ограничена в разнообразии и под каждый тип требовался отдельный порт (PS/2, порт для подключения джойстика, SCSI и т. д.). С приходом USB задумывалось, что он и станет единой универсальной заменой, существенно упростив взаимодействие устройств с компьютером. Более того, предполагалось также этой новой для своего времени разработкой стимулировать появление нетрадиционных периферийных устройств.
  • Обеспечить подключение мобильных телефонов к компьютерам. Распространяющая в те годы тенденция перехода мобильных сетей на цифровую передачу голоса выявила, что ни одни из разработанных тогда интерфейсов не мог обеспечить передачу данных и речи с телефона.
  • Изобретение комфортного принципа «подключи и играй», пригодные для «горячего подключения».

Как и в случае с подавляющим большинством цифровой техники, USB-разъем для жесткого диска за долгое время стал полностью привычным для нас явлением. Однако в разные года своего развития этот интерфейс всегда демонстрировал новые вершины скоростных показателей чтения/записи информации.

Версия USB

Описание

Пропускная способность

Первый релизный вариант интерфейса после нескольких предварительных версий. Выпущен 15 января 1996 года.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с

Доработка версии 1.0, исправляющая множество её проблем и ошибок. Выпущенная в сентябре 1998 года, впервые получила массовую популярность.

Выпущенная в апреле 2000 года, вторая версия интерфейса располагает новым более скоростным режимом работы High-Speed.

  • Режим Low-Speed: 1.5 Мбит/с
  • Режим Full-Speed: 12 Мбит/с
  • Режим High-Speed: 25-480 Мбит/с

Новейшее поколение USB, получившее не только обновлённые показатели пропускной способности, но и выпускаемая в синем/красном цвете. Дата появления - 2008 год.

До 600 Мбайт в секунду

Дальнейшая разработка третьей ревизии, вышедшая в свет 31 июля 2013 года. Делится на две модификации, которые могут обеспечить любой жёсткий диск с USB-разъёмом максимальной скорость до 10 Гбит в секунду.

  • USB 3.1 Gen 1 - до 5 Гбит/с
  • USB 3.1 Gen 2 - до 10 Гбит/с

Помимо этой спецификации, различные версии USB реализованы и под разные типы устройств. Среди разновидностей кабелей и разъёмов этого интерфейса выделяют:

USB 2.0

Стандартный

USB 3.0 уже мог предложить ещё один новый тип - С. Кабели этого типа симметричны и вставляются в соответствующее устройство с любой стороны.

С другой стороны, третья ревизия уже не предусматривает Mini и Micro «подвиды» кабелей для типа А.

Альтернативный FireWire

При всей своей популярности, eSATA и USB - ещё не все варианты того, как подключить разъем внешнего жесткого диска к компьютеру.

FireWire - чуть менее известный в народных массах высокоскоростной интерфейс. Обеспечивает последовательное подключение внешних устройств, в поддерживаемое число которых также входит и HDD.

Его свойство изохронной передачи данных главным образом нашло своё применение в мультимедийной технике (видеокамеры, DVD-проигрыватели, цифровая звуковая аппаратура). Жёсткие диски им подключают гораздо реже, отдавая предпочтение SATA или более совершенному USB-интерфейсу.

Свои современные технические показатели эта технология приобретала постепенно. Так, исходная версия FireWire 400 (1394a) была быстрее своего тогдашнего главного конкурента USB 1.0 - 400 мегабит в секунду против 12. Максимально допустимая длина кабеля - 4.5 метра.

Приход USB 2.0 оставил соперника позади, позволяя обменивать данные со скоростью 480 мегабит в секунду. Однако с выходом нового стандарта FireWire 800 (1394b), позволявший передавать 800 мегабит в секунду с максимальной длинной кабеля в 100 метров, USB 2.0 на рынке была менее востребована. Это спровоцировало разработку третьей версии последовательной универсальной шины, расширившей потолок обмена данных до 5 гбит/с.

Кроме этого, отличительной особенностью FireWire является децентрализованность. Передача информации через USB-интерфейс обязательно требует наличие ПК. FireWire же позволяет обмениваться данными между устройствами без обязательного привлечения компьютера к процессу.

Thunderbolt

Своё видение того, какой разъем жесткого диска должен в будущем стать безоговорочным стандартом, показала компания Intel совместно с Apple, представив миру интерфейс Thunderbolt (или, согласно его старому кодовому названию, Light Peak).

Построенная на архитектурах PCI-E и DisplayPort, эта разработка позволяет передавать данные, видео, аудио и электроэнергию через один порт с по-настоящему впечатляющей скоростью - до 10 Гб/с. В реальных тестах этот показатель был чуть скромнее и доходил максимум до 8 Гб/с. Тем не менее даже так Thunderbolt обогнал свои ближайшие аналоги FireWire 800 и USB 3.0, не говоря уже и о eSATA.

Но столь же массового распространения эта перспективная идея единого порта и коннектора пока что не получила. Хотя некоторыми производителями сегодня успешно встраиваются разъемы внешних жестких дисков, интерфейс Thunderbolt. С другой стороны, цена за технические возможности технологии тоже сравнительно немалая, поэтому и встречается эта разработка в основном среди дорогостоящих устройств.

Совместимость с USB и FireWire можно обеспечить при помощи соответствующих переходников. Такой подход не сделает их более быстрыми в плане передачи данных, т. к. пропускная способность обоих интерфейсов всё равно останется неизменной. Преимущество здесь только одно - Thunderbolt не будет ограничивающим звеном при подобном подключении, позволив задействовать все технические возможности USB и FireWire.

SCSI и SAS - то, о чём слышали далеко не все

Ещё один параллельный интерфейс подключения периферийных устройств, сместивший в один момент акцент своего развития с настольных компьютеров на более широкий спектр техники.

«Small Computer System Interface» был разработан чуть ранее SATA II. К моменту выхода последнего, оба интерфейса по своим свойствам были практически идентичными друг другу, способные обеспечить разъем подключения жесткого диска стабильной работой с компьютеров. Однако SCSI использовал в работе общую шину, из-за чего с контроллером могло работать лишь одно из подключённых устройств.

Дальнейшая доработка технологии, которая приобрела новое название SAS (Serial Attached SCSI), уже была лишена своего прежнего недостатка. SAS обеспечивает подключение устройств с набором управляемых команд SCSI по физическому интерфейсу, который аналогичен тому же SATA. Однако более широкие возможности позволяют подключать не только лишь разъемы жестких дисков, но и многую другую периферию (принтеры, сканеры и т. д.).

Поддерживается «горячая замена» устройств, расширители шины с возможностью одновременного подключения нескольких SAS-устройств к одному порту, а также предусмотрена обратная совместимость с SATA.

Перспективы NAS

Интереснейший способ работы с большими объёмами данных, стремительно набирающий популярность в кругах современных пользователей.

Или же сокращённо NAS представляют собой отдельный компьютер с некоторым дисковым массивом, который подключен к сети (зачастую к локальной) и обеспечивает хранение и передачу данных среди других подключённых компьютеров.

Выполняя роль сетевого хранилища, к другим устройствам этот мини-сервер подключается по обыкновенному Ethernet-кабелю. Дальнейший доступ к его настройкам осуществляется через любой браузер с подключением к сетевому адресу NAS. Имеющиеся данные на нём можно использовать как по Ethernet-кабелю, так и при помощи Wi-Fi.

Эта технология позволяет обеспечить достаточно надёжный уровень хранения информации и предоставлять к ней удобный лёгкий доступ для доверенных лиц.

Особенности подключения жёстких дисков к ноутбукам

Принцип работы HDD со стационарным компьютером предельно прост и понятен каждому - в большинстве случаев требуется соответствующим кабелем соединить разъемы питания жесткого диска с блоком питания и аналогичным образом подключить устройство к материнской плате. При использовании внешних накопителей можно вообще обойтись всего одним шлейфом (Power eSATA, Thunderbolt).

Но как правильно использовать разъемы жестких дисков ноутбуков? Ведь иная конструкция обязывает учитывать и несколько иные нюансы.

Во-первых, для подключения накопителей информации прямиком «внутрь» самого устройства следует учитывать то, что форм-фактор HDD должен быть обозначен как 2.5”

Во-вторых, в ноутбуке жесткий диск подсоединяется к материнской плате напрямую. Без каких-либо дополнительных кабелей. Достаточно просто открутить на дне предварительно выключенного ноутбука крышку для HDD. Она имеет прямоугольный вид и обычно крепится парой болтов. Именно в ту ёмкость и нужно помещать устройство хранения.

Все разъемы жестких дисков ноутбуков абсолютно идентичны своим более крупным «собратьям», предназначенных для ПК.

Ещё один вариант подключения - воспользоваться переходником. К примеру, накопитель SATA III можно подключить к USB-портам, установленным на ноутбуке, при помощи переходного устройства SATA-USB (на рынке представлено огромное множество подобных устройств для самых разных интерфейсов).

Достаточно лишь подсоединить HDD к переходнику. Его, в свою очередь, подключить к розетке 220В для подачи электропитания. И уже кабелем USB соединить всю эту конструкцию с ноутбуком, после чего жесткий диск будет отображаться при работе как ещё один раздел.

Установка SSD в систему с SATA 3 Гбит/с | По-прежнему отличный способ обновить PC?

Есть множество способов улучшения характеристик PC. Но обычно, самым эффективным является замена комплектующих. Также популярным остаётся разгон. Однако раньше он давал более ощутимый прирост скорости для CPU, GPU и памяти. Возьмите Celeron 300A, разгоните до 450 МГц и получите увеличение 50% прироста. Чтобы получить нечто подобное на нужно разогнать его до 5,25 ГГц. Но даже в этом случае нет гарантии, что настольные приложения также будут масштабироваться.

К тому же, мы сожгли уже достаточно компьютерного "железа", чтобы в полной мере ощутить риски связанные с разгоном (именно поэтому в обзорах материнских плат с чипсетами Intel седьмой серии мы придерживаемся напряжения процессора 1,35 В). Манипуляции с референсными частотами, множителями, напряжением и задержками могут навредить стабильности вашей системы.

Если вас устраивает процессор и материнская плата, сбалансировать систему для оптимальной работы можно с помощью более современной видеокарты, увеличения объёма оперативной памяти и установки твердотельного накопителя. Сегодня фокус на SSD, стоимость которых часто ниже $1/Гбайт, сейчас они дешёвые как никогда. Мы говорили это раньше и повторим сегодня: если у вас ещё нет SSD – купите. Он изменит ваше представление об отзывчивости системы.

Современные SSD уже упираются в потолок пропускной способности интерфейса SATA 6Гбит/с, в то время как скорость механических жёстких дисков за последние пять лет почти не увеличилась. Многие твердотельные накопители легко достигают 550 Мбайт/с при последовательной передаче данных, но что более важно, они с ловкостью управляются с произвольными операциями ввода/вывода в реальном времени. SSD может обработать на порядок больше запросов в секунду, чем обычные носители информации (десятки тысяч против нескольких сотен).

Распыляться можно весь день, но факт в том, что SSD – это стоящий апгрейд для тех, кто в своей системе использует только HDD, и его подтверждают цифры. С SSD запуск Windows и приложений происходит быстрее, как и перемещения файлов.

Но хватит ли старого интерфейса SATA 3Гбит/с для современного SSD с SATA 6Гбит/с?

Мы каждый раз задаём себе этот вопрос, когда на системных платах среднего класса кончаются разъёмы SATA 6 Гбит/с (от ред.: в данный момент, мы производим видеозахват на массив из четырёх Crucial m4 , подключённых к разъёмам 3 Гбит/с). А что если ваша старая система поддерживает только стандарт прошлого поколения? Стоил ли делать апгрейд? Учитывая, что самые быстрые SSD часто сдерживаются шириной интерфейса SATA 6 Гбит/с, логично предположить, что 3 Гбит/с будет "резать" производительность. Но насколько? Разница будет ощутима на практике, либо только в результатах тестов? Нужно ли обновлять контроллер накопителей?

В поисках ответов на эти вопросы, мы взяли Samsung 840 Pro , подключили его к разъёму 6 Гбит/с, а затем к разъёму предыдущего поколения. Поскольку эти накопители Samsung сейчас считаются одними из самых быстрых, полученные результаты применимы к большинству SSD high-end класса, представленных на рынке. Обратите внимание, что мы не тестируем порт SATA 1,5 Гбит/с. Было бы интересно добавить этот интерфейс для сравнения, однако он откидывает нас обратно примерно в 2005 год. Если вашему PC уже восемь лет, пора задуматься о покупке нового.

Установка SSD в систему с SATA 3 Гбит/с | Тестовый стенд и бенчмарки

Для сегодняшнего тестирования мы используем Samsung 840 Pro MZ-7PD256 на базе собственного контроллера компании S4LN021X01-8030 NZWD1 с поддержкой SATA 6 Гбит/с (ещё известный как MDX), использующего трёхъядерный процессор Cortex-R4. Микросхема дополнена кэшем данных DDR3 на 512 Мбайт. Есть и не Pro модели с трёхуровневыми ячейками памяти, но скорость и выносливость у них ниже, чем у старших моделей с 21-нанометровой NAND-памятью с многоуровневыми ячейками. На линейку 840 Pro компания Samsung даёт пять лет гарантии.


По данным Samsung скорость последовательного чтения Samsung 840 Pro достигает 540 Мбайт/с, записи - 520 Мбайт/с. Он должен обеспечивать до 100 000 произвольных операций ввода/вывода блоками по 4 Кбайт в секунду. Сейчас на Amazon модель ёмкостью 256 Гбайт продаётся за $230. Есть также версии на 128 и 512 Гбайт, за $140 и $460 соответственно.

Технические характеристики Samsung SSD 840 Pro

Производитель Samsung
Модель 840 Pro
Модельный номер MZ-7PD256
Форм-фактор 2,5" (7 мм)
Ёмкость, Гбайт 256
Контроллер MDX
Тип флеш-памяти 21 нм MLC Toggle-mode NAND
Резервирование 7%
Кэш, Мбайт 512
Интерфейс SATA 6 Гбит/с
В комплекте Samsung Magician Software
Гарантия пять лет

Тестовый стенд и ПО

Мы использовали тестовый стенд под управлением Windows 7 с материнской платой Gigabyte Z68X-UD3H-B3, процессором Intel Core i5-2500K и памятью Corsair TR3X6G1600C8D объёмом 4 Гбайт. SSD был подключён к первому разъёму 6 Гбит/с, и нам удалось переключить его в режим 3 Гбит/с в прошивке Gigabyte.

В качестве базы для сравнения мы выбрали жёсткий диск . VelociRaptor – это накопитель типоразмера 2,5" в формате 3,5", его ёмкость составляет 1 Тбайт. Благодаря скорости вращения шпинделя 10 000 об/мин и пластинам 2,5" он показал самую высокую скорость среди конкурирующих жёстких дисков. Подробности в нашей статье "Western Digital VelociRaptor WD1000DHTZ: тест и обзор обновлённой версии самого быстрого HDD" .

CPU
Материнская плата Gigabyte Z68X-UD3H-B3, Revision: 0.2 Chipset: Intel Z68 Express, BIOS: F3
Память 2 x 2 Гбайт DDR3-1333, Corsair TR3X6G1600C8D
Системный SSD Intel X25-M G1, 80 Гбайт, Прошивка 0701, SATA 3 Гбит/с
Контроллер Intel PCH Z68 SATA 6Gb/s
Питание
Тесты
Общая производительность h2benchw 3.16
PCMark 7 1.0.4
Производительность ввода/вывод IOMeter 2006.07.27
Fileserver-Benchmark
Webserver-Benchmark
Database-Benchmark
Workstation-Benchmark
Линейное чтение
Линейная запись
Случайное чтение блоков по 4 Кбайта
Случайная запись блоков по 4 Кбайта
ПО и драйверы
Операционная система Windows 7 x64 Ultimate SP1
Intel Inf 9.2.0.1030
Intel Rapid Storage 10

Установка SSD в систему с SATA 3 Гбит/с | Тестовый стенд и бенчмарки для реальных задач

Кроме обычных синтетических бенчмарков, мы добавили более реалистичные тесты. Для создания множества задач, характерных для повседневного использования, мы перешли на Professional 64-bit.

Реальные тесты:

  1. Загрузка . Отсчёт начинается с момента, когда экран POST показывает нули и заканчивается, когда появляется рабочий стол Windows.
  2. Выключение . После трёх минут работы , мы выключаем систему и начинаем отсчёт. Таймер останавливается, когда система выключена.
  3. Загрузка и Adobe Photoshop. После загрузки , командный файл запускает редактор изображений Adobe Photoshop CS6 и загружает фотографию с разрешением 15 000 x 7 266 пикселей и размером 15,7 Мбайт. После Adobe Photoshop закрывается. Отсчёт начинается после экрана POST и заканчивается, когда Adobe Photoshop выключен. Мы повторяем тест пять раз.
  4. Пять приложений. После загрузки , командный файл запускает пять различных приложений. Отсчёт начинается с запуском первого приложения и заканчивается с закрытием последнего. Мы повторяем тест пять раз.

Скриптовая последовательность для теста пяти приложений:

  • Загрузка презентации Microsoft PowerPoint и затем закрытие Microsoft PowerPoint.
  • Запуск рендерера командной строки Autodesk 3ds Max 2013 и рендеринг изображения в разрешении 100x50 пикселей. Картинка такая маленькая, потому что мы тестируем SSD, а не CPU.
  • Запуск встроенного в ABBYY FineReader 11 бенчмарка и конвертирование тестовой страницы.
  • Запуск встроенного в MathWorks MATLAB бенчмарка и его выполнение (один раз).
  • Запуск Adobe Photoshop CS6 и загрузка изображения, которое использовалось в третьем реалистичном бенчмарке, но в оригинальном формате TIF с разрешением 29 566 x 14 321 пикселей и размером 501 Мбайт.

Тестовый стенд для реальных задач

Конфигурация тестового стенда
CPU Intel Core i7-3690X Extreme Edition (32 нм Sandy Bridge-E), 6 ядер/12 потоков, 3,3 ГГц, кэш L2 6 x 256 Кбайт, общий кэш L3 15 Мбай, TDP 130 Вт, 3,9 ГГц max. Turbo Boost
Материнская плата Intel DX79SI, Chipset: Intel X79 Express, BIOS: 280B
Память 4 x 4 Гбайт DDR3-1333, Kingston KHX1600C9D3K2/8GX
Системный SSD Samsung 840 Pro, 256 Гбайт, прошивка DXM04B0Q, SATA 6 Гбит/с
Контроллер Intel PCH Z68 SATA 6 Гбит/с
Питание Seasonic X-760 760 Вт, SS-760KM Active PFC F3
Тесты
Тестовые программы 3ds Max 2013
FineReader 11
Matlab 2012b
Photoshop CS6
PowerPoint 2010
ПО и драйверы
Операционная система Windows 8 x64 Pro




Установка SSD в систему с SATA 3 Гбит/с | Результаты тестов

Скорость последовательных операций ввода/вывода

Как и ожидалось, интерфейс SATA 3 Гбит/с оказался бутылочным горлышком для Samsung 840 Pro при последовательных операциях чтения и записи. SSD более широко раскрывается на канале 6 Гбит/с. У Western Digital VelociRaptor WD1000DHTZ тоже высокий результат для механического диска. Через шину 6 Гбит/с его скорость превышает планку в 200 Мбайт/с.

Бенчмарк CrystalDiskMark 3.0 подтверждает результаты AS-SSD. Обратите внимание, что последовательное чтение и запись в этих тестах происходит с большими объёмами данных. Под Windows большая часть операций ввода/вывода являются произвольными. Последовательные операции здесь больше исключение, чем правило.

Время доступа

В среднем, VelociRaptor 3,5" находит запрашиваемые AS-SSD данные за семь миллисекунд. Это быстро для HDD и связано со скоростью вращения шпинделя 10 000 об/мин. Однако диск Western Digital VelociRaptor WD1000DHTZ даже близко не достигает скорости SSD, который на два порядка быстрее. Его показатели измеряются уже в микросекундах. В то же время, при измерении времени доступа мы не видим практической разницы между SATA 3 и 6 Гбит/с.

Скорость произвольных операций блоками по 4 Кбайт

AS-SSD: произвольное чтение/запись блоками по 4 Кбайт

Этот бенчмарк наиболее важен для понимания реальной производительности. При произвольном чтении и записи блоками по 4 Кбайт самый быстрый HDD просто не в состоянии соперничать с SSD. При подключении к порту 6 Гбит/с Samsung 840 Pro показал чуть более высокий результат, чем с разъёмом 3 Гбит/с. Запись происходит на 20 Мбайт/с быстрее, а чтение – всего на 2 Мбайт/с.

Увеличение глубины очереди даёт твердотельному накопителю больше команд для одновременной обработки, и здесь более широкий интерфейс действительно обеспечивает преимущество. Однако по большей части – это теория. В настольных окружениях глубина очереди крайне редко достигает 32-х и более команд.

Тем не менее, скорость произвольной записи и чтения через шину 6 Гбит/с как минимум в 1,5 раза быстрее.

CrystalDiskMark: произвольное чтение/запись блоками по 4 Кбайт

Показатели CrystalDiskMark говорят то же, что и предыдущий тест. Преимущество стандарта SATA 6 Гбит/с над 3 Гбит/с при малой глубине очереди, характерной для большинства настольных систем, невелико и хорошо проявляется лишь при высокой очерёдности, присущей серверным средам. В обычном PC или ноутбуке, подсистема хранения в основном работает с одной-четырьмя командами.


Iometer: произвольное чтение/запись блоками по 4 Кбайт

Результаты в Iometer немного отличаются от двух предыдущих тестов, хотя общая тенденция сохраняется. Samsung 840 Pro работает чуть быстрее при подключении к разъёму 6 Гбит/с, особенно при чтении.


Скорость произвольных операций блоками по 512 Кбайт

Через интерфейс SATA 6 Гбит/с запись и чтение данных блоками по 512 Кбайт происходит чуть быстрее, чем через 3 Гбит/с. Western Digital VelociRaptor WD1000DHTZ неплохо показал себя в тесте записи, но в чтении он сильно отстал даже от SSD, подключённого через более медленный интерфейс.

Тесты различных профилей ввода/вывода

Мы использовали профили базы данных, веб-сервера и рабочей станции в Iometer. В них симулируются определённые шаблоны доступа, характерные для каждого окружения.

Samsung 840 Pro одинакового проявил себя в тестах базы данных и рабочей станции, независимо от разъёма SATA 3 или 6 Гбит/с. Однако тест веб-сервера заметно выигрывает от более широкого интерфейса, практически удваивая результат, полученный через шину 3 Гбит/с.



PCMark 7 и трассировка

В PCMark 7 при подключении к разъёму 6 Гбит/с производительность Samsung 840 Pro выше, хотя разница незначительная.

Анализ показывает, что загрузка приложений и импорт изображений в Windows Photo Gallery через SATA 6Гбит/с происходит быстрее, чем через SATA 3 Гбит/с. Но даже через старое соединение SSD в два раза обгоняет жёсткий диск.


В играх производительность накопителя через разъём 6 Гбит/с немного выше.

PCMark Vantage

PCMark Vantage старше, чем PCMark 7. Однако он демонстрирует существенное преимущество интерфейса SATA 3.

Western Digital VelociRaptor WD1000DHTZ умудрился занять второе место в тесте медиацентра. Но вывод остаётся прежним: SSD, независимо от типа подключения, значительно обгоняют лучшие HDD.


AS-SSD Copy Benchmark

В тесте AS-SSD, Samsung 840 Pro при подключении к SATA 6 Гбит/с превышает результат, полученный на шине 3 Гбит/с почти на две трети.

Western Digital VelociRaptor WD1000DHTZ подключается к разъёму SATA III, но его механическая конструкция явно сдерживает производительность.

Тем временем, при сравнении результатов Samsung 840 Pro , становится понятно, что SSD сдерживается возможностями старого интерфейса. Но в любом случае, производительность SSD через SATA II значительно выше, чем у лучшего жёсткого диска, работающего в полную силу.

Этот тест особенно касается пользователей, постоянно копирующих большие объёмы данных на или с SSD. Очевидно, что в такой ситуации, более современный и широкий интерфейс обеспечивает практическую разницу.

Общая производительность

Результаты средней производительности всего тестового пакета показывают, что между SSD, подключённым через SATA III и SATA II существует заметная разница. Естественно, скорость чтения и записи выше, когда накопитель имеет доступ к более широкому каналу и может использовать его на полную.

Однако большинство тестов являются синтетическими. Вполне возможно, что реалистичные тесты нарисуют совсем другую картину.

Если объединить все результаты, взвесив каждый отдельный показатель, мы получим общую диаграмму, которая изображена выше. На ней чётко видно преимущество интерфейса SATA 6 Гбайт/с в синтетических тестах.

AS-SSD тоже показывает общий результат. Производительность Samsung 840 Pro через SATA II заметно ниже, чем через SATA III. Но опять же, даже самый худший результат SSD многократно превышает результаты жёсткого диска.

Тестируемые здесь задачи характерны для повседневного использования настольного компьютера. Мы сразу видим, что разница между SATA II и SATA III при загрузке составляет всего пол секунды. Гораздо заметнее прирост скорости при переходе с HDD на SSD.


По таймеру выключается на 0,6 секунды быстрее, когда Samsung 840 Pro подключён через разъём 6 Гбит/с. На практике вы этого не заметите. Даже HDD, кажется, не так плох в сравнении с SSD от Samsung.


Вторые диаграммы отображают скорость работы накопителей в процентах относительно SSD Samsung на шине SATA 3 Гбит/с.

В этом тесте сразу после загрузки запускается Adobe Photoshop CS6, загружается изображение и затем программа закрывается. Samsung 840 Pro , подключённый через SATA II, выполняет последовательность на секунду дольше, чем тот же SSD через порт SATA III. На работе такая разница никак не скажется. Но вот дополнительные 23 секунды, которые тратит такая же мощная система, но только с HDD (даже таким быстрым как VelociRaptor) вы точно ощутите.


Реальные тесты: пять приложений

Это очередной тест, в котором результаты твердотельного накопителя Samsung 840 Pro , подключённого к разъёмам разного поколения, практически равны. Разница в скорости выполнения всего лишь 1,6 секунды. Если сидеть напротив мониторов двух систем отличить их почти невозможно.


Установка SSD в систему с SATA 3 Гбит/с | Отличная возможность для апгрейда даже с SATA 3Гбит/с

Если судить только по популярным у обозревателей синтетическим тестам (AS-SSD, CrystalDiskMark, PCMark 7, Iometer и др.), то интерфейс SATA 6 Гбит/с просто необходим, чтобы получить максимальную производительность от современных SSD. В случае если вы перемещаете большие объёмы данных - это правда. Однако синтетические тесты не очень хорошо передают ощущения от системы, недавно обновлённой с обычного жёсткого диска на твердотельный накопитель. Более того, они создают иллюзию необходимости современной платформы для раскрытия возможностей передовых SSD. Однако наши реалистичные тесты показывают, что теоретические различия не всегда соответствуют практическим. В большинстве случаев, Samsung 840 Pro , подключённый через SATA 3 Гбит/с, не отставал от того же SSD, подключённого через SATA 6 Гбит/с.

SATA 6 Гбит/с практически не даёт преимуществ для обычного настольного PC

При подключении Samsung 840 Pro через SATA III в синтетических тестах его скорость резко возрастала. Различия были особенно красноречивы, когда мы намеренно задавали произвольные и последовательные операции ввода/вывода при большой глубине очереди. Но когда мы проводили реалистичные тесты загрузки и выключения , а также запуска нескольких приложений, разница сводилась почти к нулю. Именно такой она и будет при повседневном использовании.

Поскольку синтетические тесты целенаправленно дают нагрузки, разработанные для выявления различий между очень быстрыми устройствами, но редко встречающиеся в настольных окружениях, они не соответствуют более распространённым на PC задачам. Скорость произвольного ввода/вывода – это важный аспект, но велика вероятность, что вы никогда не увидите глубину очереди в 32 команды. И хотя нам понравилось измерять пиковую скорость последовательной передачи данных, всё же перемещение больших медиа файлов между двумя одинаковыми накопителями – это относительно редкое явление. Например, если копировать файл ISO с одного SSD на другой, то вы получите существенный прирост через SATA 6 Гбит/с. Но если вы перемещаете тот же файл с SSD на HDD, то даже самый быстрый интерфейс в мире не поможет преодолеть скоростные ограничения магнитного носителя.

Три самых важных аспекта:

С практической точки зрения скорость произвольных операций ввода/вывода очень важна. Под управлением Windows большинство операций ввода/вывода происходит на низкой глубине очереди. В данной ситуации синтетические бенчмарки показывают, что разница между SATA 6 Гбит/с и 3 Гбит/с совсем небольшая. Теоретический разрыв минимален, а практического - вообще нет.

Сейчас мы можем ответить на вопрос, нужны ли разъёмы SATA III 6 Гбит/с при апгрейде на SSD. Очевидно, что вы получите заметный прирост к отзывчивости системы, даже используя разъём SATA 3 Гбит/с. На практике интерфейс 3 Гбит/с не сдерживает производительность основных приложений. Интерфейс SATA III вступает в игру в синтетических тестах, достигающих технологических пределов, в задачах рабочих станций/серверов или в во время передачи больших объёмов данных с SSD на SSD.

Самое главное – установить SSD в систему. Только посмотрите, как Samsung 840 Pro противостоит самому быстрому настольному жёсткому диску под названием Western Digital VelociRaptor WD1000DHTZ . SSD не оставляет ему даже шанса, ни в синтетических, ни в натуральных тестах.

Пользователи часто спрашивают, что такое SATA и в чем его отличия от ATA (IDE). В данной статье мы рассмотрим интерфейс SATA и все его ключевые особенности.

SATA это интерфейс, который используется для подключения разнообразных накопителей информации. Например, с помощью SATA кабелей подключают , накопители и другие устройства для хранения информации. SATA-кабель представляет собой красный шлейф шириной примерно 1 см. Благодаря этим особенностям его невозможно спутать с другими интерфейсами, например с ATA (IDE).

ATA (IDE) это интерфейс, который использовался для подключения жестких дисков, до появления интерфейса SATA. В отличие от SATA интерфейс ATA является параллельным интерфейсом. ATA (IDE) шлейф состоит из 40 проводников, из-за чего он имел большую ширину. Несколько таких шлейфов в системном блоке значительно ухудшали эффективность охлаждения, что было одной из проблем ATA интерфейса.

Кроме более тонкого кабеля новый SATA интерфейс получил и другие преимущества перед своим предшественником. Одним из таких преимуществ является скорость передачи информации.

Максимальная скорость передачи информации по шине ATA составляет 133 МБайт/с, причем это чисто теоретическое значение. Внедрение SATA интерфейса не принесло большого увеличения скорости. Первая версия интерфейса SATA 1.0 могла передавать данный со скоростью 150 Мбайт/с. Но последующие версии интерфейса уже были значительно быстрее самой быстрой версии интерфейса ATA (Ultra ATA (UDMA/133)). Так, SATA 2.0 может передавать данные со скоростью 300 МБайт/с, а SATA 3.0 целых 600 Мбайт/с.

Еще одним преимуществом SATA является большая универсальность, по сравнению со старым интерфейсом ATA (IDE). Например, с помощью SATA интерфейса можно подключать внешние устройства. Для упрощения подключения внешних устройств была разработана специальная версия интерфейса – eSATA (External SATA).

Интерфейс eSATA получил режим «горячей замены», более надежные разъемы и увеличенную длину кабеля. Благодаря этим улучшениям интерфейс eSATA удобно использовать для подключения различных внешних устройств. Для питания подключаемых eSATA устройств необходимо использовать отдельный кабель. В будущих версиях интерфейса планируется внедрить питание прямо в eSATA кабель.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!