Разница между видео портами VGA, DVI и HDMI. Переходник DVI-D VGA: рассказываем об особенностях, видах и возможных проблемах, которые могут возникнуть при использовании

Помимо того факта, что ЖК-мониторы для отображения картинки требуют цифровые данные, они отличаются от классических ЭЛТ-дисплеев ещё несколькими особенностями. К примеру, в зависимости от возможностей монитора, на ЭЛТ можно вывести практически любое разрешение, поскольку трубка не имеет чётко заданного числа пикселей.

А ЖК-мониторы из-за принципа своей работы всегда имеют фиксированное ("родное") разрешение, при котором монитор обеспечит оптимальное качество картинки. С DVI это ограничение не имеет ничего общего, так как его основная причина заключается в архитектуре ЖК-монитора.

ЖК-монитор использует массив крохотных пикселей, каждый из которых состоит из трёх диодов, по одному на основной цвет (RGB: красный, зелёный, синий). ЖК-экран, имеющий "родное" разрешение 1600x1200 (UXGA), состоит из 1,92 миллиона пикселей!

Конечно же, ЖК-мониторы способны выводить другие разрешения. Но в таких случаях картинку придётся масштабировать или интерполировать. Если, к примеру, ЖК-монитор имеет "родное" разрешение 1280x1024, то меньшее разрешение 800x600 будет растянуто до 1280x1024. Качество интерполяции зависит от модели монитора. Альтернативой является вывод уменьшенного изображения в "родном" разрешении 800x600, но при этом придётся довольствоваться чёрной рамкой.

На обоих кадрах показана картинка с экрана ЖК-монитора. Слева выведено изображение в "родном разрешении" 1280x1024 (Eizo L885). Справа находится интерполированное изображение в разрешении 800x600. В результате увеличения пикселей картинка выглядит блочной. Таких проблем на ЭЛТ-мониторах не существует.

Для отображения разрешения 1600x1200 (UXGA) с 1,92 миллиона пикселей и частотой вертикальной развёртки 60 Гц монитору требуется высокая пропускная способность. Если посчитать, то необходима частота 115 МГц. Но на частоту влияют и другие факторы, например прохождение области гашения, поэтому требуемая пропускная способность возрастает ещё больше.

Около 25% всей передаваемой информации относится ко времени гашения. Оно нужно для смены позиции электронной пушки на следующую строчку в ЭЛТ-мониторе. В то же время, ЖК-мониторам время гашения практически не требуется.

Для каждого кадра передаётся не только информация об изображении, но и учитываются границы, а также область гашения. ЭЛТ-мониторам необходимо время гашения, чтобы выключить электронную пушку по завершению вывода строчки на экране и перевести её на следующую строчку для продолжения вывода. То же самое происходит в конце картинки, то есть в нижнем правом углу - электронный луч выключается и меняет позицию на верхний левый угол экрана.

Около 25% всех пиксельных данных относятся ко времени гашения. Поскольку ЖК-мониторы электронную пушку не используют, здесь время гашения совершенно ни к чему. Но его пришлось учитывать в стандарте DVI 1.0, поскольку он позволяет подключать не только цифровые ЖК, но и цифровые ЭЛТ-мониторы (где ЦАП встроен в монитор).

Время гашения оказывается очень важным фактором при подключении ЖК-дисплея по DVI-интерфейсу, поскольку каждое разрешение требует определённой пропускной способности от передатчика (видеокарта). Чем выше требуемое разрешение, тем больше должна быть пиксельная частота TMDS-передатчика. Стандарт DVI оговаривает максимальную пиксельную частоту 165 МГц (один канал). Благодаря десятикратному умножению частоты, описанному выше, мы получаем пиковую пропускную способность данных в 1,65 Гбайт/с, которой будет достаточно для разрешения 1600x1200 на 60 Гц. Если требуется большее разрешение, то дисплей следует подключать по двухканальному DVI (Dual Link DVI), тогда два DVI-передатчика будут работать совместно, что даст удвоение пропускной способности. Подробнее этот вариант описан в следующем разделе.

Впрочем, более простым и дешёвым решением будет уменьшение данных гашения. В результате, видеокартам будет предоставлено больше пропускной способности, и даже DVI-передатчик на 165 МГц сможет справиться с более высокими разрешениями. Ещё одним вариантом можно считать уменьшение частоты горизонтального обновления экрана.

В верхней части таблицы показаны разрешения, которые поддерживает один DVI-передатчик на 165 МГц. Уменьшение данных гашения (в середине) или частоты обновления (Гц) позволяет достичь больших разрешений.


На этой иллюстрации показано, какая пиксельная частота требуется для определённого разрешения. Верхняя строчка показывает работу ЖК-монитора с уменьшенными данными гашения. Второй ряд (60Hz CRT GTF Blanking) показывает требуемую пропускную способность ЖК-монитора, если данные гашения нельзя уменьшить.

Ограничение TMDS-передатчика пиксельной частотой 165 МГц сказывается также и на максимально возможном разрешении ЖК-дисплея. Даже при уменьшении данных гашения мы всё равно упираемся в определённый предел. Да и снижение частоты горизонтального обновления может дать не очень хороший результат в некоторых приложениях.

Чтобы решить эту проблему, спецификация DVI оговаривает дополнительный режим работы, названный Dual Link. В данном случае используется сочетание двух TMDS-передатчиков, которые передают данные на один монитор через один разъём. Доступная пропускная способность удваивается до 330 МГц, чего вполне достаточно для вывода практически любого существующего разрешения. Важное замечание: видеокарта с двумя выходами DVI не является картой Dual Link, у которой два TMDS-передатчика работают через один порт DVI!

На иллюстрации показан двухканальный режим работы DVI, когда используется два TMDS-передатчика.

Впрочем, видеокарты с хорошей поддержкой DVI и уменьшенной информацией гашения будет вполне достаточно для вывода информации на один из новых 20" и 23" дисплеев Apple Cinema в "родном" разрешении 1680x1050 или 1920x1200, соответственно. В то же время, для поддержки 30" дисплея с разрешением 2560x1600 от интерфейса Dual Link уже никуда не деться.

Из-за высокого "родного" разрешения 30" дисплей Apple Cinema требует подключения по Dual Link DVI!

Хотя два разъёма DVI уже стали стандартом на high-end 3D-картах для рабочих станций, не все видеокарты потребительского уровня могут этим похвастаться. Благодаря двум разъёмам DVI мы всё же можем использовать интересную альтернативу.

На этом примере два одноканальных порта используются для подключения дисплея на девять мегапикселей (3840x2400). Картинка просто разделена на две части. Но этот режим должны поддерживать и монитор, и видеокарта.

На данный момент можно найти шесть различных разъёмов DVI. Среди них: DVI-D для полностью цифрового подключения в одноканальной и двухканальной версиях; DVI-I для аналогового и цифрового подключения в двух версиях; DVI-A для аналогового подключения и новый разъём VESA DMS-59. Чаще всего производители графических карт оснащают свои продукты двухканальным разъёмом DVI-I, даже если карта имеет один порт. С помощью адаптера порт DVI-I можно превратить в аналоговый выход VGA.

Обзор различных разъёмов DVI.


Раскладка разъёма DVI.

Спецификация DVI 1.0 не оговаривает новый двухканальный разъём DMS-59. Он был представлен рабочей группой VESA в 2003 году и позволяет вывести два выхода DVI на картах малого форм-фактора. Он также призван упростить расположение разъёмов на картах с поддержкой четырёх дисплеев.

Наконец, мы переходим к сути нашей статьи: качество TMDS-передатчиков разных графических карт. Хотя спецификация DVI 1.0 и оговаривает максимальную пиксельную частоту 165 МГц, не все видеокарты дают на ней приемлемый сигнал. Многие позволяют достичь 1600x1200 только на уменьшенных пиксельных частотах и со сниженным временем гашения. Если вы попытаетесь подключить к такой карте устройство HDTV с разрешением 1920x1080 (даже с уменьшенным временем гашения), ваш ждёт неприятный сюрприз.

Все графические процессоры, поставляемые сегодня ATi и nVidia, уже имеют встроенный на чип TMDS-передатчик для DVI. Производители карт на графических процессорах ATi чаще всего используют встроенный передатчик для стандартной комбинации 1xVGA и 1xDVI. Для сравнения, многие карты на графических процессорах nVidia используют внешний TMDS-модуль (к примеру, от Silicon Image), даже несмотря на наличие TMDS-передатчика на самом чипе. Чтобы обеспечить два DVI-выхода, производитель карты всегда устанавливает второй TMDS-чип независимо от того, на каком графическом процессоре базируется карта.

На следующих иллюстрациях показаны обычные дизайны.

Типичная конфигурация: один выход VGA и один DVI. TMDS-передатчик может быть как интегрирован в графический чип, так и вынесен на отдельный чип.

Возможные конфигурации DVI: 1x VGA и 1x Single Link DVI (A), 2x Single Link DVI (B), 1x Single Link и 1x Dual Link DVI, 2x Dual Link DVI (D). Примечание: если на карте установлены два выхода DVI, то это не означает, что они двухканальные! На иллюстрациях E и F показана конфигурация новых портов VESA DMS-59 с высокой плотностью, где обеспечивается четыре или два одноканальных выхода DVI.

Как покажет дальнейшее тестирование в нашей статье, качество выхода DVI на картах ATi или nVidia бывает весьма разным. Даже если отдельный TMDS-чип на карте известен своим качеством, это вовсе не означает, что каждая карта с этим чипом обеспечит высокое качество сигнала DVI. Даже его расположение на графической карте немало влияет на конечный результат.

Совместимость со стандартом DVI

Чтобы протестировать качество DVI современных графических карт на процессорах ATi и nVidia, мы выслали шесть образцов карт в тестовые лаборатории Silicon Image для проверки совместимости со стандартом DVI.

Что интересно, для получения лицензии DVI совсем не обязательно проводить тесты совместимости со стандартом. В результате, на рынок выходят продукты с заявленной поддержкой DVI, которые не соответствуют спецификациям. Одной из причин такого положения дел является сложная и, следовательно, дорогая процедура тестирования.

Отреагировав на эту проблему, компания Silicon Image в декабре 2003 года основала тестовый центр DVI Compliance Test Center (CTC) . Производители устройств с поддержкой DVI могут выслать свои продукты для тестирования на совместимость со стандартом DVI. Собственно, это мы и сделали с нашими шестью графическими картами.

Тесты разделены на три категории: передатчик (обычно видеокарта), кабель и приёмник (монитор). Для оценки совместимости DVI создаются так называемые глазковые диаграммы, представляющие сигнал DVI. Если сигнал не выходит за определённые границы, то тест считается пройденным. В противном случае устройство не совместимо со стандартом DVI.

На иллюстрации показана глазковая диаграмма TMDS-передатчика на частоте 162 МГц (UXGA) с передачей миллиардов битов данных.

Проверка глазковой диаграммы является самым важным тестом для оценки качества сигнала. На диаграмме заметны флуктуации сигнала (дрожь фазы, jitter), искажения амплитуды и эффект "звона". Эти тесты также позволяют наглядно увидеть качество DVI.

Тесты совместимости со стандартом DVI включают в себя следующие проверки.

  1. Передатчик: глазковая диаграмма с заданными границами.
  2. Кабели: создаются глазковые диаграммы до и после передачи сигнала, затем они сравниваются. И вновь, границы отклонения сигнала жёстко заданы. Но здесь уже допускаются большие расхождения с идеальным сигналом.
  3. Приёмник: вновь создаётся глазковая диаграмма, но опять же, допускаются ещё большие расхождения.

Самые большие проблемы при последовательной высокоскоростной передаче связаны с дрожью фазы сигнала. Если такого эффекта нет, то вы всегда можете чётко выделить сигнал на графике. Большинство флуктуаций сигнала создаются тактовым сигналом графического чипа, что приводит к появлению низкочастотной флуктуации частоты в диапазонах от 100 кГц до 10 МГц. На глазковой диаграмме флуктуация сигнала заметна по изменению частоты, данных, данных по отношению к частоте, амплитуды, слишком избыточному или слишком малому подъёму. Кроме того, измерения DVI различаются для разных частот, что необходимо учитывать при проверке глазковой диаграммы. Но благодаря глазковой диаграмме, можно наглядно оценить качество сигнала DVI.

Для измерений анализируется один миллион перекрывающихся участков с помощью осциллографа. Этого достаточно для оценки общей производительности соединения DVI, поскольку сигнал на протяжении длительного периода времени не будет существенно изменяться. Графическое представление данных производится с помощью специального программного обеспечения, которое Silicon Image создала в сотрудничестве с Tektronix. Сигнал, соответствующий спецификации DVI, не должен заступать на границы (синие области), которые автоматически прорисовываются программным обеспечением. Если сигнал попадёт на синюю область, то тест считается не пройденным, а устройство - не соответствующим спецификации DVI. Программа сразу же показывает результат.

Видеокарта не прошла тест совместимости с DVI.

Программное обеспечение сразу же показывает, прошла карта тест, или нет.

Для кабеля, передатчика и приёмника используются разные границы (глазки). Сигнал не должен заступать на эти области.

Чтобы понять, как определяется совместимость с DVI и что необходимо при этом учитывать, нам следует погрузиться в дополнительные детали.

Так как передача DVI полностью цифровая, то возникает вопрос, откуда появляется дрожание фазы сигнала. Здесь можно выдвинуть две причины. Первая - дрожание вызывается самим данными, то есть 24 параллельными битами данных, которые выдаёт графический чип. Однако данные автоматически корректируются в чипе TMDS при необходимости, что гарантирует отсутствие дрожания фазы в данных. Поэтому оставшейся причиной появления дрожания является тактовый сигнал.

На первый взгляд, сигнал данных свободен от помех. Это гарантируется благодаря регистру-защёлке (latch), встроенному в TMDS. Но главной проблемой всё же остаётся тактовый сигнал, который портит поток данных через 10-кратное умножение ФАПЧ.

Так как частота умножается в 10 раз с помощью ФАПЧ, влияние даже небольшого искажения увеличивается. В итоге данные попадают на приёмник уже не в своём первоначальном состоянии.

Сверху показан идеальный тактовый сигнал, ниже - сигнал, где один из фронтов начал передаваться слишком рано. Благодаря ФАПЧ, это напрямую влияет на сигнал данных. В общем, каждое возмущение тактового сигнала приводит к ошибкам при передаче данных.

Когда приёмник семплирует повреждённый сигнал данных с помощью "идеального" тактового сигнала гипотетического ФАПЧ, он получает ошибочные данные (жёлтая полоса).

Как это работает на самом деле: если приёмник будет использовать повреждённый тактовый сигнал передатчика, он всё ещё сможет считать повреждённые данные (красная полоса). Именно поэтому тактовый сигнал тоже передаётся по кабелю DVI! Приёмнику требуется тот же самый (повреждённый) тактовый сигнал.

Стандарт DVI включает в себя устранение дрожания фазы (jitter management). Если оба компонента будут использовать один и тот же повреждённый тактовый сигнал, то информация может считываться из повреждённого сигнала данных без ошибок. Таким образом, совместимые с DVI устройства могут работать даже в условиях наличия низкочастотного дрожания фазы. Ошибку в тактовом сигнале тогда можно обойти.

Как мы уже объясняли выше, DVI работает оптимально, если передатчик и приёмник используют один и тот же тактовый сигнал и их архитектура одинакова. Но так бывает не всегда. Именно поэтому использование DVI может привести к появлению проблем, несмотря на сложные меры предотвращения дрожания фазы.

На иллюстрации показан оптимальный сценарий для передачи DVI. Умножение тактового сигнала в ФАПЧ (PLL) приводит к задержке. И поток данных уже не будет целостным. Но всё выправляется с помощью учёта той же самой задержки в ФАПЧ приёмника, поэтому данные принимаются корректно.

Стандарт DVI 1.0 чётко определяет задержку ФАПЧ. Такая архитектура называется несвязанной (non-coherent). Если ФАПЧ не соответствует данным спецификациям по времени задержки, то могут появиться проблемы. В индустрии сегодня ведутся горячие дискуссии по поводу того, следует ли использовать подобную несвязанную архитектуру. Причём, ряд компаний выступает за полный пересмотр стандарта.

В этом примере используется тактовый сигнал ФАПЧ вместо сигнала графического чипа. Следовательно, сигналы данных и тактовые сигналы согласованы. Однако из-за задержки в ФАПЧ приёмника данные обрабатываются некорректно, и устранение дрожания фазы уже не работает!

Теперь вам должно быть понятно, почему использование длинных кабелей может стать проблемным, даже если не учитывать внешние помехи. Длинный кабель может вносить задержку в тактовый сигнал (напомним, что сигналы данных и тактовые сигналы имеют разные частотные диапазоны), дополнительная задержка может влиять на качество приёма сигнала.

Типы разъемов DVI и их технические характеристики

У многих возникает проблема правильного определения и выбора необходимого переходника для видеокарты или монитора. Для облегчения данной задачи мы представляем вашему вниманию таблицу отличий с указанием типа разъемов DVI, а также информацию об их технических характеристиках.

Виды DVI

DVI-A - только аналоговая передача.
DVI-I - аналоговая и цифровая передача.
DVI-D - только цифровая передача.

Видеокарты с DVI-A не поддерживают мониторы соответствующие стандарту DVI-D.
Видеокарту с DVI-I можно подключить к DVI-D–монитору (кабелем с двумя коннекторами DVI-D–вилка).
Переходник DVI-I на VGA существует.
Переходника DVI-D на VGA с функцией передачи видео не существует, только специальные конвертеры , которые имеют высокую стоимость (от 35 у.е.). В продаже имеются технологические переходники DVI-VGA, которые служат для других целей и не подходят для конвертации видеосигнала.

Технические характеристики

Формат данных, используемый в DVI, основан на PanelLink - формате последовательной передачи данных, разработанном фирмой Silicon Image. Использует технологию высокоскоростной передачи цифровых потоков TMDS (Transition Minimized Differential Signaling, дифференциальная передача сигналов с минимизацией перепадов уровней) - три канала, передающие потоки видео и дополнительных данных, с пропускной способностью до 3,4 Гбит/с на канал.

Максимальная длина кабеля не указана в спецификации DVI, потому что она зависит от количества передаваемой информации. Кабель длиной 10,5 метра можно использовать для передачи изображения с разрешением до 1920 x 1200 точек. По кабелю длиной 15 метров получится передать в нормальном качестве изображение с разрешением 1280 x 1024 точек. Для усиления сигнала при передаче по кабелю большой длины применяются специальные устройства. При их использовании длина кабеля может быть увеличена до 61 метра (в случае использования усилителя с собственным источником питания).
Разновидности разъёмов DVI

Single link (одинарный режим) DVI использует четыре витых пары проводов (красный, зелёный, синий, и clock), обеспечивающих возможность передавать 24 бита на пиксель. С ним может быть достигнуто максимальное возможное разрешение 1920x1200 (60 Гц) или 1920x1080 (75 Гц).

Dual link (двойной режим) DVI удваивает пропускную способность и позволяет получать разрешения экрана 2560x1600 и 2048x1536. Поэтому для самых крупных ЖК мониторов с большим разрешением, таких, как 30" модели, обязательно нужна видеокарта с двухканальным DVI-D Dual-Link выходом. Если у монитора максимальное разрешение экрана 1280x1024, то подключать его кабелем dual link не имеет смысла, т. к. данный кабель предназначен для мониторов с бо́льшим разрешением.

Источник информации -

Компьютеры и ноутбуки уже лет 10 оснащаются не одним, а двумя-тремя видами разъёмов одновременно. Порты отличаются и по размеру, и по внешнему виду. Какой тип подключения монитора предпочесть? В статье также рассматривается практическая полезность одновременного подключения двух, а то и трёх мониторов.

Распространенные, но старые виды разъёмов

VGA (Video Graphics Array): устаревшая классика

Синий трапециевидный интерфейс доминировал в компьютерной сфере лет 25-30. Он великолепно справлялся со старыми ЭЛТ-дисплеями благодаря своей аналоговой природе. Но появились плоские ЖК-экраны – цифровые устройства, затем стали возрастать разрешения и старый-добрый VGA стал сдавать позиции.

Сегодня он всё реже встраивается в видеокарты, но до сих пор многие устройства (бытовые проигрыватели, проекторы, телевизоры) оснащаются поддержкой безнадёжно устаревшего VGA. Вероятно, ещё несколько лет «старичок» останется не слишком желательным, но повсеместно распространённым стандартом де-факто – если есть сомнения, каким кабелем можно будет подключить монитор в соседнем офисе, то берите VGA.

DVI-I (Digital Visual Interface): другой видеоинтерфейс-долгожитель

Вообще-то их несколько: DVI-A, -D и -I, плюс их разновидности. Но когда речь идёт о самом распространённом стандарте «Ди-Ви-Ай», то подразумевается аналогово-цифровой DVI-I Dual Channel – именно эта спецификация встроена в большинство ПК.

В своё время DVI пришёл на замену стремительно устаревающему в середине 2000-х VGA. Возможность передавать как аналоговый, так и цифровой сигнал, поддержка больших (в ту эпоху) разрешений и высоких частот, отсутствие недорогих конкурентов: DVI исправно служит стандартом и в наши дни. Но вряд ли его активная «жизнь» будет продолжаться больше, чем ещё 3-4 года.

Разрешения выше минимально комфортного на сегодня FullHD всё чаще встречаются даже в недорогих компьютерных системах. С ростом мегапикселей заканчиваются и некогда серьёзные возможности DVI. Не вдаваясь в технические подробности, отметим, что пиковые способности DVI не позволят выводить на экран изображение с разрешением свыше 2560 х 1600 с приемлемой частотой (выше 60 Гц).

Современные видеоинтерфейсы

HDMI (High Definition Multimedia Interface) – король мультимедиа

Когда-то несуразная для русского слуха аббревиатура «эйч-ди-эм-ай» всё плотнее входит в нашу жизнь. Почему именно HDMI стал таким популярным? Всё просто:

  • сколь угодно длинные провода (ладно, если честно – до 25-30 метров);
  • передача звука (даже многоканального!) вместе с видео – прощай, необходимость покупать отдельные колонки для ТВ;
  • удобнейшие небольшие коннекторы;
  • поддержка всюду – проигрыватели, «зомбоящики», проекторы, видеорегистраторы, игровые приставки – сложно сходу вспомнить о технике, где не было бы разъёма HDMI;
  • сверхвысокие разрешения;
  • 3D-картинка. И да, можно вместе со сверхвысокими разрешениями (версии HDMI 4b и 2.0).

Перспективы у HDMI самые радужные – развитие продолжается, в 2013 году были приняты спецификации версии 2.0: этот стандарт совместим со старыми проводами-разъёмами, но поддерживает всё более внушительные разрешения и другие «вкусные» возможности.

DisplayPort (DP): разъём, который только становится повсеместным

А ещё DisplayPort потрясающе красив внешне…

Многие годы компьютеры редко оснащались этим прямым конкурентом HDMI. И — несмотря на то, что всем хорош был DisplayPort: и поддержкой очень высоких разрешений вместе со стереосигналом; и передачей аудио; и внушительной длиной провода. Он даже выгоднее производителям, чем лицензируемый HDMI: не нужно выплачивать разработчикам стандарта те 15-25 центов, которые полагаются владельцам HDMI.

Разъёму DP просто не повезло в первые годы существования. Впрочем, компьютеры всё чаще оснащаются сразу парой Display Port современного стандарта версии 1.4. И на его основе «родился» другой популярнейший стандарт с огромными перспективами: «младший брат» Дисплей-порта…

Mini DP (Mini DisplayPort)

Вместе с HDMI и категорически устаревшим VGA, разъём Mini DisplayPort встраивается едва ли не в каждый компьютер и ноутбук. На его стороне все достоинства «старшего брата», плюс миниатюрные размеры – идеальное решение для постоянно утончающихся ноутбуков, ультрабуков, и даже смартфонов с планшетами.

Передача аудиосигнала, чтобы не докупать к монитору отдельные колонки? Пожалуйста – сколько вам каналов? Стереоскопия даже в 4K? Да, пусть интерфейсу и придётся поднапрячь все свои электронные мускулы. Совместимость? Переходники на рынке есть самые разнообразные, едва ли не на любой другой разъём. Будущее? Стандарт Mini DP живёт и развивается.

Thunderbolt: экзотические варианты подключения монитора

Есть и такие. Который уже год фирма Apple вместе с разработчиками Intel продвигают быстрый, универсальный, но безумно дорогой интерфейс Thunderbolt.

Зачем мониторам ещё и Thunderbolt? Вопрос остаётся который год без вразумительного ответа.

На практике мониторы с его поддержкой встречаются не так часто, да и есть большие сомнения в оправданности Thunderbolt для передачи видеосигнала. Разве что мода на всё «яблочное»…

К сожалению, за рамками статьи остаётся интереснейшая возможность подключать экраны к компьютеру (и даже подавать на них электропитание!) при помощи интерфейса USB 3.0 (или, ещё интереснее, 3.1). Перспектив у этой технологии множество, преимущества тоже имеются. Впрочем, это тема отдельного обзора – и ближайшего будущего!

Как подключить новый монитор к старому компьютеру?

Под «старым компьютером» чаще всего подразумевается ПК с единственным портом – VGA или DVI. Если новый монитор (или телевизор) категорически не хотят дружить с таким портом, то следует приобрести сравнительно недорогой переходник – от VGA к HDMI, от Mini DP к DVI и т.д. – вариантов множество.

При использовании переходников возможны некоторые неудобства (например, через VGA никак не передать звук или изображение с особо высоким разрешением), но такая схема будет работать исправно и надёжно.

Видеосигнал без проводов (WiDi)!

Существуют и такие интерфейсы, даже несколько. Intel Wireless Display (он же – WiDi, или «вай-дай», как бы странно ни звучало это для русскоязычного читателя): адаптер ценой около 30 долларов подключается в USB-разъём телевизора или монитора (если технология поддерживается производителем).

Сигнал отправляется через Wi-Fi, на экране – видеоизображение. Но это лишь в теории, а на практике существенными препятствиями являются расстояние и наличие стен между приёмником и передатчиком. Технология интересная, есть у неё и перспективы – но пока не более того.

Другой беспроводной видеоинтерфейс – AirPlay от Apple. Суть и практическое применение такое же, как и у WiDI от Intel. Дороговато, не слишком надёжно, далеко не практично.

Решение более интересное, но пока малораспространённое — Wireless Home Digital Interface (WHDi). Это не совсем Wi-Fi, хотя весьма похожая беспроводная технология. Ключевая особенность – проприетарный способ защиты от помех, задержек и искажений.

Подключение нескольких мониторов одновременно

С задачей присоединения основного или дополнительного экрана справится даже начинающий пользователь: монитор подключается к ПК или ноутбуку не сложнее, чем флешка. Подключить монитор к компьютеру возможно только правильным способом: коннектор попросту не войдёт в разъём, который для него не предназначен.

Отличная функция современных видеокарт и операционных систем – возможность подключения сразу нескольких мониторов к одному источнику сигнала (ПК, ноутбуку). Практическая польза огромная, притом в двух разных вариантах.

1. Режим клонирования изображения

Экран основного компьютера работает в обычном режиме. Но одновременно изображение полностью дублируется на крупнодиагональный телевизор и/или проектор. Достаточно лишь подключить видеокабель и к большому экрану, и к проектору. Звук передаётся вместе с изображением, если использовать современные разъёмы (HDMI, Mini DP).

2. Режим нескольких экранов

Разрешение мониторов постоянно растёт – но всегда найдутся задачи, для которых хотелось бы иметь экран пошире. Расчёты в крупной таблице Excel, или работа сразу с парой браузеров; дизайнерские задачи и редактирование видео. Даже набор текста удобнее, когда рядом с основным есть ещё и дополнительный дисплей. «Промежуток» – рамки экранов на практике мешают не больше, чем оправа очков – через несколько минут их просто не замечаешь. Любят использовать сразу несколько мониторов и геймеры – погружение в игровой процесс при такой схеме захватывает заметно более. Кстати, некоторые видеокарты AMD поддерживают аж до 6 мониторов одновременно (технология Eyefinity наделала в IT-сообществе много шуму ещё лет 5 назад).

Картинка: так можно вызвать настройки подключения второго или третьего монитора: щелчок по «Настройкам графики» от Intel или Nvidia.

Как подключить 2 й монитор к компьютеру? Вставить разъём кабеля – скорее всего, изображение моментально «подхватится» вторым экраном. Если этого не произошло, или требуются дополнительные настройки / другой режим – минутная работа в графическом драйвере видеокарты. Чтобы попасть в эту программу, достаточно щёлкнуть правой кнопкой по значку видеодрайвера Intel, Nvidia или AMD – в зависимости от того, какой видеоадаптер установлен в ПК, и выбрать пункт «Настройка». Иконка видеоадаптера всегда присутствует в Панели управления, и почти во всех случаях – в трее Windows, около часов.

Термином DVI-D VGA чаще всего называют небольшие устройства (переходники), с помощью которых старые мониторы с аналоговыми разъёмами подключаются к на компьютерах, передающих цифровой сигнал.

Особенностью такого подключения является не совсем стопроцентная совместимость, из-за которой далеко не каждый такой адаптер на самом деле работает. И, хотя стоят эти устройства не слишком дорого – в среднем, около $2–5 – в большинстве случаев лучше отдать предпочтение другому приспособлению, называемому конвертером сигнала.

Особенности разъёмов DVI-D и VGA

Портом DVI обладают те компьютеры и ноутбуки, которые поддерживают специальную технологию – digital visual interface или «цифровой интерфейс». Ею пользуются для передачи видеоизображения на периферийные устройства вывода данных – от телевизоров и до .

Использование технологии позволяет получить сигнал с лучшим качеством, который не получится передать с помощью устаревшего в настоящее время интерфейса . Для сравнения, максимальное разрешение, поддерживаемое технологией Video Graphics Array, составляет всего лишь 1280х1024 пикселя. Для DVI-D аналогичный показатель составляет 2560х1600 пикселей.

Новая технология DVI уже используется практически на всех современных мониторах и устройствах вывода. Однако переход на более новый и совершенный способ передачи данных создал определённую проблему пользователям тех мониторов, которые имеют только разъём VGA.

Ведь ещё в 2000-х годах большая часть даже достаточно больших экранов с диагональю 22–24 дюйма комплектовались только старыми портами. И подключить их к современным ПК можно, только если пользоваться для этого специальным переходником.

Существует 3 вида разъёмов DVI:

    обеспечивающий только аналоговую передачу данных интерфейс DVI-A;

    для передачи данных и в цифровом, и в аналоговом формате – DVI-I;

    только для цифрового изображения – DVI-D.

Из-за того что компьютеры передают картинку в цифровом формате, большинство современных видеокарт имеют только один вид разъёма – DVI-D. Устаревшие , комплектующиеся интерфейсами DVI-I, можно подключать с помощью специального кабеля.

Обеспечить такое же подключение к экрану VGA, обладающему меньшими показателями разрешения (аналоговому и уже не поддерживающему даже формат FullHD) с помощью простых кабелей или переходников удаётся далеко не всегда.

Проблемы совместимости

Если сравнить сигналы, которые идут от порта DVI-D , можно сделать вывод об их различиях. И для того чтобы правильно передать информацию в цифровом виде на аналоговый монитор можно пользоваться переходниками с одного интерфейса на другой – или преобразователями сигнала с такими же портами. Рассматривая возможность покупки обычного DVI-D/VGA адаптера, следует знать о проблемах совместимости , с которыми придётся столкнуться большинству пользователей.

Главное преимущество этого небольшого устройства заключается в его цене . Однако из-за отсутствия контактов C1–C4 (4 прямоугольных отверстия на разъёме DVI -D возможность аналоговой передачи данных отсутствует. И, если, например, от порта DVI-I или DVI-A такие данные на отправить всё-таки можно, вероятность появления изображения на мониторе от с цифровым интерфейсом будет минимальной.

Невысокая стоимость переходников приводит к тому, что многие пользователи покупают их для своих старых мониторов, которые требуется соединить с современными картами. Иногда такой способ срабатывает. Но, из-за того что «распиновка» (или расположение разъёмов) у старого и нового интерфейсов отличаются, сигнала может и не быть.

Изображения не появляется на экране из-за невозможности преобразовать сигнал с помощью обычной распайки. Если же картинка всё-таки возникла, скорее всего, видеокарта имеет всё-таки интерфейс DVI -I или DVI-A. То есть поддерживает и аналоговую передачу данных.

Решение вопроса

Проблема с несовместимостью достаточно серьёзная – но вполне решаемая. Благодаря тому, что данные могут не просто передаваться, но и преобразовываться, специалистами уже давно изобретено другое устройство, называющее преобразователем или конвертером DVI-D в VGA.

На вид оно, действительно, может напоминать обычный переходник, однако оборудовано дополнительным, увеличивающим размер приспособления, модулем.

Рис. 6. Конвертер DVI-D VGA.

В задачи устройства входит конвертирование цифрового сигнала в аналоговый. И, за счёт более сложной конструкции, стоит такой преобразователь в несколько раз дороже. с другой стороны, возникает вопрос – зачем продаются в интернет-магазинах переходники DVI-D VGA?

Ответить на него несложно – причина заключается в некомпетентности некоторых продавцов. Или, возможно, в желании продать больше товара, не имеющего тех функций, ради которых его покупают. На самом же деле, на сайтах, где указывается достоверная информация о переходниках и кабелях, можно увидеть в описании другие параметры – переход осуществляется не с DVI-D, а с DVI -I на VGA.

Конвертеры

Существует целый ряд моделей преобразователей данных с DVI-D на VGA. В большинстве случаев для них требуется отдельное питание, так как устройство переставляет собой не простой переходник, а уже полноценный прибор с расположенной внутри платой. Эта особенность и делает конвертер дороже – но экономить в данном случае не имеет смысла.

В возможности преобразователя цифрового сигнала в аналоговый входит передача информации от современной видеокарты устаревшим мониторам. Или таким же далеко не новым (или просто недорогим) телевизорам, которые тоже можно использовать для вывода информации с ПК или ноутбука.

Может понадобиться конвертер и при подключении – хотя большинство из них уже давно имеет , тоже являющийся цифровым и совместимый с любой современной видеокартой. Для такого устройства подобные переходники не понадобятся.

Особенности преобразования сигнала

Среди имеющихся на рынке преобразователей можно найти устройства с такими характеристиками:

    поддержкой подключения DVI -D -источника к дисплеям VGA с максимальным размером картинки до 1920х1200 пикселей и минимальным 800х600 пикселей;

    вход конвертера имеет 21 пин, выход – 15 пин;

    максимальная частота – 60 Гц;

    длина кабеля преобразователя – от нескольких сантиметров до 1,5–1,8 м;

    стоимость – от $6.

Следует знать: Преобразователь является однонаправленным. То есть способен конвертировать цифровой сигнал в аналоговый – но не наоборот. При необходимости подключения VGA-видеокарты к DVI-D-монитору понадобится другой, обратный конвертер. Хотя при этом будет не слишком качественным.

Кроме того, покупая преобразователь, стоит учитывать его несовместимость с интерфейсами DVI-I и DVI-A. Причём, большинство конвертеров требуют отдельного питания и вывода аудио с помощью дополнительного кабеля. Хотя в тех случаях, когда кабель, соединяющий компьютер и устройство вывода, не превышает по длине 1–1,5 м, подключать его к сети не обязательно.

Для корректной работы желательно, чтобы поддерживал ту же частоту обновления, которую обеспечивает преобразователь. А ещё рекомендуется пользоваться дисплеями или телевизорами с диагональю не больше 40 дюймов – иначе на изображении могут появиться полосы.

Важно: Если преобразовывать сигнал приходится не только с DVI-D на VGA, но и в другие форматы, стоит приобрести мультифункциональный конвертер , поддерживающий несколько видов интерфейсов.

Рис. 10. Мультифункциональный преобразователь.

DVI-разъем используют в современных телевизорах (плазменных, жидкокристаллических), LCD-мониторах и видеокартах персональных компьютеров. Название "DVI" произошло от английской аббревиатуры Digital VisualInterface, что переводится как "цифровой видеоинтерфейс". DVI-разъем был разработан и впервые внедрен еще в 1999 году компанией Digital Display Working Group. В нее входят мировые гиганты по производству компьютерной техники и мониторов, такие как Intel, Compaq, Fujitsu, Silicon Image, Hewlett Packard и NEC. DVI-разъем пришел на смену VGA-интерфейсу и на сегодняшний день практически полностью заменил его.

Описание DVI-технологии

Метод используемый в этом интерфейсе, разработан фирмой Silicon Image. Он относится к типу устройств с последовательной передачей данных. DVI-кабель построен на принципе витой пары. Три пары проводов передают цвета (красный, зеленый и синий), а четвертая - сигналы тактовой частоты. DVI-разъем позволяет передавать как аналоговые, так Различают три подтипа рассматриваемого интерфейса:

  • DVI-A - используется для передачи исключительно ;
  • DVI-I - универсальный разъем, применяется для передачи как аналоговых, так и цифровых сигналов;
  • DVI-D - для передачи только цифровых сигналов.

Кроме того, технология DVI оснащается специальной системой защиты цифровой информации HDCP, которая разработана фирмой Intel.

Недостатки DVI-интерфейса

Основным минусом передачи информации через данный разъем является ограничение длины кабеля, а также зависимости упомянутого параметра от типа передаваемого сигнала. Например, изображение с расширением 1920х1200 пикселей с частотой 60 Гц можно передать по кабелю, длина которого составляет 5 метров, а по пятнадцатиметровому кабелю возможно передать сигнал, максимальное качество которого составит всего лишь 1280х1024 пикселя при той же частоте. Поэтому при необходимости применения длинных кабелей приходится использовать дополнительное оборудование - специальные усилители сигнала (репитеры), которые ставятся через определенные расстояния. С указанным недостатком связывают появление точек на мониторе при использовании кабеля низкого качества. Чтобы устранить этот эффект, необходимо или сменить шнур, или понизить качество входного сигнала.

Разъем DVI-HDMI

Данный цифровой разъем используют для передачи сигналов HDTV. Предназначен для подсоединения телевизоров к различным источникам сигналов. Особенностью упомянутого разъема является то, что через него можно передавать не только видеосигнал, но и цифровой звук. Он позволяет транслировать 8 аудиоканалов с разрядностью в 24 бита. Существуют различные спецификации означенного интерфейса, а также переходники, благодаря которым можно соединять между собой разные типы разъемов. Также HDMI-коннектор можно использовать для соединения персонального компьютера и телевизора. Следует помнить, что интерфейс HDMI-DVI поддерживает специальный протокол, предназначенный для защиты лицензионных контентов от несанкционированной перезаписи.

Заключение

Несмотря на то что DVI-технология практически полностью вытеснила VGA-интерфейсы, на сегодняшний день этот тип достаточно широко используется на старых ПК. Если на вашей видеокарте нет DVI-коннектора, но при этом требуется подключить монитор, поддерживающий эту технологию, тогда можно использовать специальный переходник - DVI-VGA-разъем.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!