Симплекс метод простой пример решения. Симплексный метод решения задач линейного программирования

Симплекс-метод - это итеративный процесс направленного решения системы уравнений по шагам, который начинается с опорного решения и в поисках лучшего варианта движется по угловым точкам области допустимого решения, улучшающих значение целевой функции до тех пор, пока целевая функция не достигнет оптимального значения.

Назначение сервиса . Сервис предназначен для онлайн решения задач линейного программирования (ЗЛП) симплекс-методом в следующих формах записи:

  • в виде симплексной таблицы (метод жордановых преобразований); базовой форме записи;
  • модифицированным симплекс-методом ; в столбцовой форме; в строчечной форме.

Инструкция . Выберите количество переменных и количество строк (количество ограничений). Полученное решение сохраняется в файле Word и Excel .

Количество переменных 2 3 4 5 6 7 8 9 10
Количество строк (количество ограничений) 1 2 3 4 5 6 7 8 9 10
При этом ограничения типа x i ≥ 0 не учитывайте. Если в задании для некоторых x i отсутствуют ограничения, то ЗЛП необходимо привести к КЗЛП, или воспользоваться этим сервисом . При решении автоматически определяется использование М-метода (симплекс-метод с искусственным базисом) и двухэтапного симплекс-метода .

Вместе с этим калькулятором также используют следующие:
Графический метод решения ЗЛП
Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Задачи динамического программирования
Распределить 5 однородных партий товара между тремя рынками так, чтобы получить максимальный доход от их продажи. Доход от продажи на каждом рынке G(X) зависит от количества реализованных партий товара Х и представлен в таблице.

Объем товара Х (в партиях) Доход G(X)
1 2 3
0 0 0 0
1 28 30 32
2 41 42 45
3 50 55 48
4 62 64 60
5 76 76 72

Алгоритм симплекс-метода включает следующие этапы:

  1. Составление первого опорного плана . Переход к канонической форме задачи линейного программирования путем введения неотрицательных дополнительных балансовых переменных.
  2. Проверка плана на оптимальность . Если найдется хотя бы один коэффициент индексной строки меньше нуля, то план не оптимальный, и его необходимо улучшить.
  3. Определение ведущих столбца и строки . Из отрицательных коэффициентов индексной строки выбирается наибольший по абсолютной величине. Затем элементы столбца свободных членов симплексной таблицы делит на элементы того же знака ведущего столбца.
  4. Построение нового опорного плана . Переход к новому плану осуществляется в результате пересчета симплексной таблицы методом Жордана-Гаусса .

Если необходимо найти экстремум целевой функции, то речь идет о поиске минимального значения (F(x) → min , см. пример решения минимизации функции) и максимального значения ((F(x) → max , см. пример решения максимизации функции)

Экстремальное решение достигается на границе области допустимых решений в одной из вершин угловых точек многоугольника, либо на отрезке между двумя соседними угловыми точками.

Основная теорема линейного программирования . Если целевая функция ЗЛП достигает экстремального значения в некоторой точке области допустимых решений, то она принимает это значение в угловой точке. Если целевая функция ЗЛП достигает экстремального значения более чем в одной угловой точке, то она принимает это же значение в любой из выпуклой линейной комбинации этих точек.

Суть симплекс-метода . Движение к точке оптимума осуществляется путем перехода от одной угловой точки к соседней, которая ближе и быстрее приближает к X опт. Такую схему перебора точек, называемую симплекс-метод , предложил Р. Данцигом.
Угловые точки характеризуются m базисными переменными, поэтому переход от одной угловой точки к соседней возможно осуществить сменой в базисе только одной базисной переменной на переменную из небазиса.
Реализация симплекс-метода в силу различных особенностей и постановок задач ЛП имеет различные модификации .

Построение симплекс-таблиц продолжается до тех пор, пока не будет получено оптимальное решение. Как с помощью симплекс-таблицы определить, что решение задачи линейного программирования является оптимальным?
Если последняя строка (значения целевой функции) не содержит отрицательных элементов, следовательно, найдет оптимальный план.

Замечание 1. Если одна из базисных переменных равна нулю, то крайняя точка, соответствующая такому базисному решению - вырожденная. Вырожденность возникает, когда имеется неоднозначность в выборе направляющей строки. Можно вообще не заметить вырожденности задачи, если выбрать другую строку в качестве направляющей. В случае неоднозначности нужно выбирать строку с наименьшим индексом, чтобы избежать зацикливания.

Замечание 2. Пусть в некоторой крайней точке все симплексные разности неотрицательные D k ³ 0 (k = 1..n+m),т.е. получено оптимальное решение и существует такой А k - небазисный вектор, у которого D k = 0. Тогда максимум достигается по крайней мере в двух точках, т.е. имеет место альтернативный оптимум. Если ввести в базис эту переменную x k , значение целевой функции не изменится.

Замечание 3. Решение двойственной задачи находится в последней симплексной таблице. Последние m компонент вектора симплексных разностей(в столбцах балансовых переменных) - оптимальное решение двойственной задачи. Значение целевых функций прямой и двойственной задачи в оптимальных точках совпадают.

Замечание 4. При решении задачи минимизации в базис вводится вектор с наибольшей положительной симплексной разностью. Далее применяется тот же алгоритм, что и для задачи максимизации.

Если задано условие «Необходимо, чтобы сырье III вида было израсходовано полностью», то соответствующее условие представляет собой равенство.

Здесь приведено ручное (не апплетом) решение двух задач симплекс-методом (аналогичным решению апплетом) с подробными объяснениями для того, чтобы понять алгоритм решения задач симплекс-методом. Первая задача содержит знаки неравенства только " ≤ " (задача с начальным базисом), вторая может содержить знаки " ≥ ", " ≤ " или " = " (задача с искусственным базисом), они решаются по разному.

Симплекс-метод, решение задачи с начальным базисом

1)Симплекс-метод для задачи с начальным базисом (все знаки неравенств-ограничений " ≤ ").

Запишем задачу в канонической форме, т.е. ограничения-неравенства перепишем в виде равенств, добавляя балансовые переменные:

Эта система является системой с базисом (базис s 1 , s 2 , s 3 , каждая из них входит только в одно уравнение системы с коэффициентом 1), x 1 и x 2 - свободные переменные. Задачи, при решении которых применяется симплекс-метод, должны обладать следующими двумя свойствами: -система ограничений должна быть системой уравнений с базисом; -свободные члены всех уравнений в системе должны быть неотрицательны.

Полученная система - система с базисом и ее свободные члены неотрицательны, поэтому можно применить симплекс-метод . Составим первую симплекс-таблицу (Итерация 0) для решения задачи на симплекс-метод , т.е. таблицу коэффициентов целевой функции и системы уравнений при соответствующих переменных. Здесь "БП" означает столбец базисных переменных, «Решение» - столбец правых частей уравнений системы. Решение не является оптимальным, т.к. в z – строке есть отрицательные коэффициенты.

симплекс-метод итерация 0

Отношение

Для улучшения решения перейдем к следующей итерации симплекс-метода , получим следующую симплекс-таблицу. Для этого надо выбрать разрешающий столбец , т.е. переменную, которая войдет в базис на следующей итерации симплекс-метода. Он выбирается по наибольшему по модулю отрицательному коэффициенту в z-строке (в задаче на максимум) – в начальной итерации симплекс-метода это столбец x 2 (коэффициент -6).

Затем выбирается разрешающая строка , т.е. переменная, которая выйдет из базиса на следующей итерации симплекс-метода. Она выбирается по наименьшему отношению столбца "Решение" к соответствующим положительным элементам разрешающего столбца (столбец «Отношение») – в начальной итерации это строка s 3 (коэффициент 20).

Разрешающий элемент находится на пересечении разрешающего столбца и разрешающей строки, его ячейка выделена цветом, он равен 1. Следовательно, на следующей итерации симплекс-метода переменная x 2 заменит в базисе s 1 . Заметим, что в z-строке отношение не ищется, там ставится прочерк " - ". В случае если есть одинаковые минимальные отношения, то выбирается любое из них. Если в разрешающем столбце все коэффициенты меньше или равны 0, то решение задачи бесконечно.

Заполним следующую таблицу «Итерация 1». Её мы получим из таблицы «Итерация 0». Цель дальнейших преобразований - превратить разрешающий столбец х 2 в единичный (с единицей вместо разрешающего элемента и нулями вместо остальных элементов).

1)Вычисление строки х 2 таблицы "Итерация 1". Сначала делим все члены разрешающей строки s 3 таблицы "Итерация 0" на разрешающий элемент (он равен 1 в данном случае) этой таблицы, получим строку x 2 в таблице «Итерации 1». Т.к. разрешающий элемент в данном случае равен 1, то строка s 3 таблицы "Итерация 0" будет совпадать со строкой х 2 таблицы "Итерация 1". Строку x 2 таблицы "Итерации 1" мы получили 0 1 0 0 1 20, остальные строки таблицы "Итерация 1" будут получены из этой строки и строк таблицы "Итерация 0" следующим образом:

2) Вычисление z-строки таблицы "Итерация 1". На месте -6 в первой строке (z-строке) в столбце х 2 таблицы "Итерация 0" должен быть 0 в первой строке таблицы "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на 6, получим 0 6 0 0 6 120 и сложим эту строку с первой строкой (z - строкой) таблицы "Итерация 0" -4 -6 0 0 0 0, получим -4 0 0 0 6 120. В столбце x 2 появился ноль 0, цель достигнута. Элементы разрешающего столбца х 2 выделены красным цветом.

3) Вычисление строки s 1 таблицы "Итерация 1". На месте 1 в s 1 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -1, получим 0 -1 0 0 -1 -20 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 2 1 1 0 0 64, получим строку 2 0 1 0 -1 44. В столбце х 2 получен необходимый 0.

4) Вычисление строки s 2 таблицы "Итерация 1". На месте 3 в s 2 строке таблицы "Итерация 0" должен быть 0 в таблице "Итерация 1". Для этого все элементы строки х 2 таблицы "Итерация 1" 0 1 0 0 1 20 умножим на -3, получим 0 -3 0 0 -3 -60 и сложим эту строку с s 1 - строкой таблицы "Итерация 0" 1 3 0 1 0 72, получим строку 1 0 0 1 -3 12. В столбце х 2 получен нужный 0. Столбец х 2 в таблице "Итерация 1" стал единичным, он содержит одну 1 и остальные 0.

Строки таблицы «Итерация 1» получаем по следующему правилу:

Новая строка = Старая строка – (Коэффициент разрешающего столбца старой строки)*(Новая разрешающая строка).

Например для z-строки имеем:

Старая z-строка (-4 -6 0 0 0 0) -(-6)*Новая разрешающая строка -(0 -6 0 0 -6 -120) =Новая z-строка (-4 0 0 0 6 120).

Для следующих таблиц пересчет элементов таблицы делается аналогично, поэтому мы его опускаем.

симплекс-метод итерация 1

Отношение

Разрешающий столбец х 1 , разрешающая строка s 2 , s 2 выходит из базиса, х 1 входит в базис. Совершенно аналогично получим остальные симплекс-таблицы, пока не будет получена таблица со всеми положительными коэффициентами в z-строке. Это признак оптимальной таблицы.

симплекс-метод итерация 2

Отношение

Разрешающий столбец s 3 , разрешающая строка s 1 , s 1 выходит из базиса, s 3 входит в базис.

симплекс-метод итерация 3

Отношение

В z-строке все коэффициенты неотрицательны, следовательно, получено оптимальное решение x 1 = 24, x 2 = 16, z max = 192.

Рассмотрим симплекс -метод для решения задач линейного программирования (ЛП). Он основан на переходе от одного опорного плана к другому, при котором значение целевой функции возрастает.

Алгоритм симплекс-метода следующий:

  1. Исходную задачу переводим в канонический вид путем введения дополнительных переменных. Для неравенства вида ≤ дополнительные переменные вводят со знаком (+ ), если же вида ≥ то со знаком (— ). В целевую функцию дополнительные переменные вводят с соответствующими знаками с коэффициентом, равным 0 , т.к. целевая функция не должна при этом менять свой экономический смысл.
  2. Выписываются вектора P i из коэффициентов при переменных и столбца свободных членов. Этим действием определяется количество единичных векторов. Правило – единичных векторов должно быть столько, сколько неравенств в системе ограничений.
  3. После этого исходные данные вводятся в симплекс-таблицу. В базис вносятся единичные вектора, и исключая их из базиса, находят оптимальное решение . Коэффициенты целевой функции записывают с противоположным знаком.
  4. Признак оптимальности для задачи ЛП – решение оптимально, если в f – строке все коэффициенты положительны. Правило нахождения разрешающего столбца – просматривается f – строка и среди ее отрицательных элементов выбирается наименьшее. Вектор P i его содержащий становится разрешающим. Правило выбора разрешающего элемента – составляются отношения положительных элементов разрешающего столбца к элементам вектора Р 0 и то число, которое дает наименьшее отношение становится разрешающим элементом, относительно которого будет произведен пересчет симплекс-таблицы. Строка, содержащая этот элемент называется разрешающей строкой. Если в разрешающем столбце нет положительных элементов, то задача не имеет решения. После определения разрешающего элемента переходят к пересчету новой симплекс – таблицы.
  5. Правила заполнения новой симплекс – таблицы. На месте разрешающего элемента проставляют единицу, а другие элементы полагают равными 0 . Разрешающий вектор вносят в базис, из которого исключают соответствующий нулевой вектор, а остальные базисные вектора записывают без изменений. Элементы разрешающей строки делят на разрешающий элемент, а остальные элементы пересчитывают по правилу прямоугольников.
  6. Так поступают до тех пор, пока в f – строке все элементы не станут положительными.

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Приводим задачу к каноническому виду:

Составляем вектора:

Заполняем симплекс – таблицу:

:
Пересчитаем первый элемент вектора Р 0 , для чего составляем прямоугольник из чисел: и получаем: .

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P 1 . Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план :
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на

+
- x 1 + x 2 - S 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4



Переменная называется базисной для данного уравнения, если она входит в данное уравнение с коэффициентом один и не входит в оставшиеся уравнения (при условии, что в правой части уравнения стоит положительное число).
Если в каждом уравнении присутствует базисная переменная, тогда говорят, что в системе присутствует базис.
Переменные, которые не являются базисными, называются свободными. (см. систему ниже)

Идея симплекс метода заключается в том, чтобы переходить от одного базиса к другому, получая значение функции, как минимум, не меньше имеющегося (каждому базису соответствует единственное значение функции).
Очевидно, количество всевозможных базисов для любой задачи число конечное (и не очень большое).
Следовательно, рано или поздно, ответ будет получен.

Как осуществляется переход от одного базиса к другому?
Запись решения удобнее вести в виде таблиц. Каждая строка эквивалентна уравнению системы. Выделенная строка состоит из коэффициентов функции (сравните сами). Это позволяет не переписывать переменные каждый раз, что существенно экономит время.
B выделенной строке выбираем наибольший положительный коэффициент. Это необходимо для того, чтобы получить значение функции, как минимум, не меньше имеющегося.
Выбран столбец.
Для положительных коэффициентов выбранного столбца считаем отношение Θ и выбираем наименьшее значение. Это необходимо для того, чтобы после преобразования столбец свободных членов остался положительным.
Выбрана строка.
Следовательно, определен элемент, который будет базисным. Далее считаем.


+
- x 1 + x 2 - S 1 + R 1 = 1
x 1 3 x 2 + S 2 = 15
- 2 x 1 + x 2 + S 3 = 4

x 1 = 0 x 2 = 0 S 1 = 0
S 2 = 15 S 3 = 4 R 1 = 1
=> W = 1

Шаг №1
x 1 x 2 S 1 S 2 S 3 R 1 св. член Θ
-1 1 -1 0 0 1 1 1: 1 = 1
1 3 0 1 0 0 15 15: 3 = 5
-2 1 0 0 1 0 4 4: 1 = 4
1 -1 1 0 0 0 W - 1
-1 1 -1 0 0 1 1
4 0 3 1 0 -3 12
-1 0 1 0 1 -1 3
0 0 0 0 0 1 W - 0


+
- x 1 + x 2 - S 1 = 1
4 x 1 3 S 1 + S 2 = 12
- x 1 + S 1 + S 3 = 3



Шаг №1
x 1 x 2 S 1 S 2 S 3 св. член Θ
-1 1 -1 0 0 1
4 0 3 1 0 12 12: 4 = 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
-1 1 -1 0 0 1
1 0 3/4 1/4 0 3
-1 0 1 0 1 3
4 0 1 0 0 F - 1
0 1 -1/4 1/4 0 4
1 0 3/4 1/4 0 3
0 0 7/4 1/4 1 6
0 0 -2 -1 0 F - 13

S 1 = 0 S 2 = 0
x 1 = 3 x 2 = 4 S 3 = 6
=> F - 13 = 0 => F = 13
Среди коэффициентов выделенной строки нет положительных. Следовательно, найдено наибольшее значение функции F.

Для изготовления трех видов рубашек используются нитки, пуговицы и ткань. Запасы ниток, пуговиц и ткани, нормы их расхода на пошив одной рубашки указаны в таблице. Найти максимальную прибыль и оптимальный план выпуска изделий ее обеспечивающий (найти ).

рубашка 1 рубашка 2 рубашка 3 Запасы нитки (м.) 1 9 3 96 пуговицы (шт.) 20 10 30 640 ткань ( 1 2 2 44 Прибыль (р.) 2 5 4

Решение задачи

Построение модели

Через и количество рубашек 1-го, 2-го и 3-го вида, предназначенных к выпуску.

Тогда ограничения на ресурсы будут иметь следующий вид:

Кроме того, по смыслу задачи

Целевая функция, выражающая получаемую прибыль:

Получаем следующую задачу линейного программирования:

Приведение задачи линейного программирования к каноническому виду

Приведем задачу к каноническому виду. Введем дополнительные переменные. В целевую функцию все дополнительные переменные введем с коэффициентом, равным нулю. Дополнительные переменные прибавим к левым частям ограничений, не имеющих предпочтительного вида, и получим равенства.

Решение задачи симплекс-методом

Заполняем симплексную таблицу:

Так как мы решаем задачу на максимум – наличие в индексной строке отрицательных чисел при решении задачи на максимум свидетельствует о том, что нами оптимальное решение не получено и что от таблицы 0-й итерации необходимо перейти к следующей.

Переход к следующей итерации осуществляем следующим образом:

ведущий столбец соответствует

Ключевая строка определяется по минимуму соотношений свободных членов и членов ведущего столбца (симплексных отношений):

На пересечении ключевого столбца и ключевой строки находим разрешающий элемент, т.е. 9.

Теперь приступаем к составлению 1-й итерации: Вместо единичного вектора вводим вектор .

В новой таблице на месте разрешающего элемента пишем 1, все остальные элементы ключевого столбца –нули. Элементы ключевой строки делятся на разрешающий элемент. Все остальные элементы таблицы вычисляются по правилу прямоугольника.

Ключевой столбец для 1-й итерации соответствует

Разрешающим элементов является число 4/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 2-й итерации.

Ключевой столбец для 2-й итерации соответствует

Находим ключевую строку, для этого определяем:

Разрешающим элементов является число 10/3. Вектор выводим из базиса и вводим вместо него вектор . Получаем таблицу 3-й итерации.

БП c Б A o x 1 x 2 x 3 x 4 x 5 x 6 Симплексные 2 5 4 0 0 0 отношения 0 x 4 0 96 1 9 3 1 0 0 32/3 x 5 0 640 20 10 30 0 1 0 64 x 6 0 44 1 2 2 0 0 1 22 F j - c j 0 -2 -5 -4 0 0 0 1 x 2 5 32/3 1/9 1 1/3 1/9 0 0 32 x 5 0 1600/3 170/9 0 80/3 -10/9 1 0 20 x 6 0 68/3 7/9 0 4/3 -2/9 0 1 17 F j - c j 160/3 -13/9 0 -7/3 5/9 0 0 2 x 2 5 5 -1/12 1 0 1/6 0 -1/4 -- x 5 0 80 10/3 0 0 10/3 1 -20 24 x 3 4 17 7/12 0 1 -1/6 0 3/4 204/7 F j - c j 93 -1/12 0 0 1/6 0 7/4 3 x 2 5 7 0 1 0 1/4 1/40 -3/4 x 1 2 24 1 0 0 1 3/10 -6 x 3 4 3 0 0 1 -3/4 -7/40 17/4 F j - c j 95 0 0 0 1/4 1/40 5/4

В индексной строке все члены неотрицательные, поэтому получен следующее решение задачи линейного программирования (выписываем из столбца свободных членов):

Необходимо шить 24 рубашки 1-го вида, 7 рубашек 2-го вида и 3 рубашки 3-го вида. При этом получаемая прибыль будет максимальна и составит 95 руб.

Помощь в решении ваших задач по этому предмету вы можете найти, отправив сообщение в ВКонтакте , на Viber или заполнив форму . Стоимость решения домашней работы начинается от 7 бел.руб. за задачу (200 рос.руб.), но не менее 10 бел.руб. (300 рос.руб.) за весь заказ. Подробное оформление. Стоимость помощи на экзамене онлайн (в этом случае необходима 100% предоплата) - от 30 бел.руб. (1000 рос.руб.) за решение билета.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!