Смотреть что такое "HTTP" в других словарях. Все о протоколах передачи данных http и https

HTTP - это протокол передачи гипертекста между распределёнными системами. По сути, http является фундаментальным элементом современного Web-а. Как уважающие себя веб разработчики, мы должны знать о нём как можно больше.

Давайте взглянем на этот протокол через призму нашей профессии. В первой части пройдёмся по основам, посмотрим на запросы/ответы. В следующей статье разберём уже более детальные фишки, такие как кэширование, обработка подключения и аутентификация.

Также в этой статье я буду, в основном, ссылаться на стандарт RFC 2616 : Hypertext Transfer Protocol -- HTTP/1.1.

Основы HTTP

HTTP обеспечивает общение между множеством хостов и клиентов, а также поддерживает целый ряд сетевых настроек.

В основном, для общения используется TCP/IP, но это не единственный возможный вариант. По умолчанию, TCP/IP использует порт 80, но можно заюзать и другие.

Общение между хостом и клиентом происходит в два этапа: запрос и ответ. Клиент формирует HTTP запрос, в ответ на который сервер даёт ответ (сообщение). Чуть позже, мы более подробно рассмотрим эту схему работы.

Текущая версия протокола HTTP - 1.1, в которой были введены некоторые новые фишки. На мой взгляд, самые важные из них это: поддержка постоянно открытого соединения, новый механизм передачи данных chunked transfer encoding, новые заголовки для кэширования. Что-то из этого мы рассмотрим во второй части данной статьи.

URL

Сердцевиной веб-общения является запрос, который отправляется через Единый указатель ресурсов (URL). Я уверен, что вы уже знаете, что такое URL адрес, однако для полноты картины, решил всё-таки сказать пару слов. Структура URL очень проста и состоит из следующих компонентов:

Протокол может быть как http для обычных соединений, так и https для более безопасного обмена данными. Порт по умолчанию - 80. Далее следует путь к ресурсу на сервере и цепочка параметров.

Методы

С помощью URL, мы определяем точное название хоста, с которым хотим общаться, однако какое действие нам нужно совершить, можно сообщить только с помощью HTTP метода. Конечно же существует несколько видов действий, которые мы можем совершить. В HTTP реализованы самые нужные, подходящие под нужды большинства приложений.

Существующие методы:

GET : получить доступ к существующему ресурсу. В URL перечислена вся необходимая информация, чтобы сервер смог найти и вернуть в качестве ответа искомый ресурс.

POST : используется для создания нового ресурса. POST запрос обычно содержит в себе всю нужную информацию для создания нового ресурса.

PUT : обновить текущий ресурс. PUT запрос содержит обновляемые данные.

DELETE : служит для удаления существующего ресурса.

Данные методы самые популярные и чаще всего используются различными инструментами и фрэймворками. В некоторых случаях, PUT и DELETE запросы отправляются посредством отправки POST, в содержании которого указано действие, которое нужно совершить с ресурсом: создать, обновить или удалить.

Также HTTP поддерживает и другие методы:

HEAD : аналогичен GET. Разница в том, что при данном виде запроса не передаётся сообщение. Сервер получает только заголовки. Используется, к примеру, для того чтобы определить, был ли изменён ресурс.

TRACE : во время передачи запрос проходит через множество точек доступа и прокси серверов, каждый из которых вносит свою информацию: IP, DNS. С помощью данного метода, можно увидеть всю промежуточную информацию.

OPTIONS : используется для определения возможностей сервера, его параметров и конфигурации для конкретного ресурса.

Коды состояния

В ответ на запрос от клиента, сервер отправляет ответ, который содержит, в том числе, и код состояния. Данный код несёт в себе особый смысл для того, чтобы клиент мог отчётливей понять, как интерпретировать ответ:

1xx: Информационные сообщения

Набор этих кодов был введён в HTTP/1.1. Сервер может отправить запрос вида: Expect: 100-continue, что означает, что клиент ещё отправляет оставшуюся часть запроса. Клиенты, работающие с HTTP/1.0 игнорируют данные заголовки.

2xx: Сообщения об успехе

Если клиент получил код из серии 2xx, то запрос ушёл успешно. Самый распространённый вариант - это 200 OK. При GET запросе, сервер отправляет ответ в теле сообщения. Также существуют и другие возможные ответы:

  • 202 Accepted : запрос принят, но может не содержать ресурс в ответе. Это полезно для асинхронных запросов на стороне сервера. Сервер определяет, отправить ресурс или нет.
  • 204 No Content : в теле ответа нет сообщения.
  • 205 Reset Content : указание серверу о сбросе представления документа.
  • 206 Partial Content : ответ содержит только часть контента. В дополнительных заголовках определяется общая длина контента и другая инфа.

3xx: Перенаправление

Своеобразное сообщение клиенту о необходимости совершить ещё одно действие. Самый распространённый вариант применения: перенаправить клиент на другой адрес.

  • 301 Moved Permanently : ресурс теперь можно найти по другому URL адресу.
  • 303 See Other : ресурс временно можно найти по другому URL адресу. Заголовок Location содержит временный URL.
  • 304 Not Modified : сервер определяет, что ресурс не был изменён и клиенту нужно задействовать закэшированную версию ответа. Для проверки идентичности информации используется ETag (хэш Сущности - Enttity Tag);

4xx: Клиентские ошибки

Данный класс сообщений используется сервером, если он решил, что запрос был отправлен с ошибкой. Наиболее распространённый код: 404 Not Found. Это означает, что ресурс не найден на сервере. Другие возможные коды:

  • 400 Bad Request : вопрос был сформирован неверно.
  • 401 Unauthorized : для совершения запроса нужна аутентификация. Информация передаётся через заголовок Authorization.
  • 403 Forbidden : сервер не открыл доступ к ресурсу.
  • 405 Method Not Allowed : неверный HTTP метод был задействован для того, чтобы получить доступ к ресурсу.
  • 409 Conflict : сервер не может до конца обработать запрос, т.к. пытается изменить более новую версию ресурса. Это часто происходит при PUT запросах.

5xx: Ошибки сервера

Ряд кодов, которые используются для определения ошибки сервера при обработке запроса. Самый распространённый: 500 Internal Server Error. Другие варианты:

  • 501 Not Implemented : сервер не поддерживает запрашиваемую функциональность.
  • 503 Service Unavailable : это может случиться, если на сервере произошла ошибка или он перегружен. Обычно в этом случае, сервер не отвечает, а время, данное на ответ, истекает.

Форматы сообщений запроса/ответа

На следующем изображении вы можете увидеть схематично оформленный процесс отправки запроса клиентом, обработка и отправка ответа сервером.

Давайте посмотрим на структуру передаваемого сообщения через HTTP:

Message = *() CRLF [] = Request-Line | Status-Line = Field-Name ":" Field-Value

Между заголовком и телом сообщения должна обязательно присутствовать пустая строка. Заголовков может быть несколько:

Тело ответа может содержать полную информацию или её часть, если активирована соответствующая возможность (Transfer-Encoding: chunked). HTTP/1.1 также поддерживает заголовок Transfer-Encoding.

Общие заголовки

Вот несколько видов заголовков, которые используются как в запросах, так и в ответах:

General-header = Cache-Control | Connection | Date | Pragma | Trailer | Transfer-Encoding | Upgrade | Via | Warning

Что-то мы уже рассмотрели в этой статье, что-то подробней затронем во второй части.

Заголовок via используется в запросе типа TRACE, и обновляется всеми прокси-серверами.

Заголовок Pragma используется для перечисления собственных заголовков. К примеру, Pragma: no-cache - это то же самое, что Cache-Control: no-cache. Подробнее об этом поговорим во второй части.

Заголовок Date используется для хранения даты и времени запроса/ответа.

Заголовок Upgrade используется для изменения протокола.

Transfer-Encoding предназначается для разделения ответа на несколько фрагментов с помощью Transfer-Encoding: chunked. Это нововведение версии HTTP/1.1.

Заголовки сущностей

В заголовках сущностей передаётся мета-информация контента:

Entity-header = Allow | Content-Encoding | Content-Language | Content-Length | Content-Location | Content-MD5 | Content-Range | Content-Type | Expires | Last-Modified

Все заголовки с префиксом Content- предоставляют информацию о структуре, кодировке и размере тела сообщения.

Заголовок Expires содержит время и дату истечения сущности. Значение “never expires” означает время + 1 код с текущего момента. Last-Modified содержит время и дату последнего изменения сущности.

С помощью данных заголовков, можно задать нужную для ваших задач информацию.

Формат запроса

Запрос выглядит примерно так:

Request-Line = Method SP URI SP HTTP-Version CRLF Method = "OPTIONS" | "HEAD" | "GET" | "POST" | "PUT" | "DELETE" | "TRACE"

SP - это разделитель между токенами. Версия HTTP указывается в HTTP-Version. Реальный запрос выглядит так:

GET /articles/http-basics HTTP/1.1 Host: www.articles.com Connection: keep-alive Cache-Control: no-cache Pragma: no-cache Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Список возможных заголовков запроса:

Request-header = Accept | Accept-Charset | Accept-Encoding | Accept-Language | Authorization | Expect | From | Host | If-Match | If-Modified-Since | If-None-Match | If-Range | If-Unmodified-Since | Max-Forwards | Proxy-Authorization | Range | Referer | TE | User-Agent

В заголовке Accept определяется поддерживаемые mime типы, язык, кодировку символов. Заголовки From, Host, Referer и User-Agent содержат информацию о клиенте. Префиксы If- предназначены для создания условий. Если условие не прошло, то возникнет ошибка 304 Not Modified.

Формат ответа

Формат ответа отличается только статусом и рядом заголовков. Статус выглядит так:

Status-Line = HTTP-Version SP Status-Code SP Reason-Phrase CRLF

  • HTTP версия
  • Код статуса
  • Сообщение статуса, понятное для человека

Обычный статус выглядит примерно так:

HTTP/1.1 200 OK

Заголовки ответа могут быть следующими:

Response-header = Accept-Ranges | Age | ETag | Location | Proxy-Authenticate | Retry-After | Server | Vary | WWW-Authenticate

  • Age время в секундах, когда сообщение было создано на сервере.
  • ETag MD5 сущности для проверки изменений и модификаций ответа.
  • Location используется для перенаправления и содержит новый URL адрес.
  • Server определяет сервер, где было сформирован ответ.

Думаю, на сегодня теории достаточно. Теперь давайте взглянем на инструменты, которыми мы можем пользоваться для мониторинга HTTP сообщений.

Инструменты для определения HTTP трафика

Существует множество инструментов для мониторинга HTTP трафика. Вот несколько из них:

Наиболее часто используемый - это Chrome Developers Tools:

Если говорить об отладчике, можно воспользоваться Fiddler :

Для отслеживания HTTP трафика вам потребуется curl, tcpdump и tshark.

Библиотеки для работы с HTTP - jQuery AJAX

Поскольку jQuery очень популярен, в нём также есть инструментарий для обработки HTTP ответов при AJAX запросах. Информацию о jQuery.ajax(settings) можете найти на официальном сайте .

Передав объект настроек (settings), а также воспользовавшись функцией обратного вызова beforeSend, мы можем задать заголовки запроса, с помощью метода setRequestHeader().

$.ajax({ url: "http://www.articles.com/latest", type: "GET", beforeSend: function (jqXHR) { jqXHR.setRequestHeader("Accepts-Language", "en-US,en"); } });

Если хотите обработать статус запроса, то это можно сделать так:

$.ajax({ statusCode: { 404: function() { alert("page not found"); } } });

Итог

Вот такой вот он, тур по основам протокола HTTP. Во второй части будет ещё больше интересных фактов и примеров.

HTTP (HyperText Transfer Protocol - «протокол передачи гипертекста») - протокол прикладного уровня передачи данных (изначально - в виде гипертекстовых документов). Основой HTTP является технология «клиент-сервер», то есть предполагается существование потребителей (клиентов), которые инициируют соединение и посылают запрос, и поставщиков (серверов), которые ожидают соединения для получения запроса, производят необходимые действия и возвращают обратно сообщение с результатом.

HTTP используется также в качестве «транспорта» для других протоколов прикладного уровня, таких как SOAP , XML-RPC , WebDAV.

Основным объектом манипуляции в HTTP является ресурс, на который указывает URI (Uniform Resource Identifier) в запросе клиента. Обычно такими ресурсами являются хранящиеся на сервере файлы, но ими могут быть логические объекты или что-то абстрактное. Особенностью протокола HTTP является возможность указать в запросе и ответе способ представления одного и того же ресурса по различным параметрам: формату, кодировке, языку и т. д. Именно благодаря возможности указания способа кодирования сообщения клиент и сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.

HTTP - протокол прикладного уровня, аналогичными ему являются FTP и SMTP - простой протокол передачи почты . Обмен сообщениями идёт по обыкновенной схеме «запрос-ответ». Для идентификации ресурсов HTTP использует глобальные URI . В отличие от многих других протоколов, HTTP не сохраняет своего состояния. Это означает отсутствие сохранения промежуточного состояния между парами «запрос-ответ». Компоненты, использующие HTTP, могут самостоятельно осуществлять сохранение информации о состоянии, связанной с последними запросами и ответами. Браузер, посылающий запросы, может отслеживать задержки ответов. Сервер может хранить IP-адреса и заголовки запросов последних клиентов. Однако сам протокол не осведомлён о предыдущих запросах и ответах, в нём не предусмотрена внутренняя поддержка состояния, к нему не предъявляются такие требования.

    Расширяемость

Возможности протокола легко расширяются благодаря внедрению своих собственных заголовков, сохраняя совместимость с другими клиентами и серверами. Они будут игнорировать неизвестные им заголовки, но при этом можно получить необходимую функциональность при решении специфической задач.

    HTTP/1.1 - текущая версия протокола. Новым в этой версии был режим «постоянного соединения»: TCP-соединение может оставаться открытым после отправки ответа на запрос, что позволяет посылать несколько запросов за одно соединение. Клиент теперь обязан посылать информацию об имени хоста, к которому он обращается, что сделало возможным более простую организацию виртуального хостинга.

HTTP не сохраняет информацию по транзакциям, поэтому в следующей транзакции приходится начинать все заново. Преимущество состоит в том, что HTTP сервер может обслужить в заданный промежуток времени гораздо больше клиентов, ибо устраняются дополнительные расходы на отслеживание сеансов от одного соединения к другому. Есть и недостаток: для сохранения информации по транзакциям более сложные CGI- программы должны пользоваться скрытыми полями ввода или внешними средствами, например Cookie .

Методы HTTP запроса

Метод HTTP - последовательность из любых символов, кроме управляющих и разделителей, указывающая на основную операцию над ресурсом. Обычно метод представляет собой короткое английское слово, записанное заглавными буквами. Обратите внимание, что название метода чувствительно к регистру.

Каждый сервер обязан поддерживать как минимум методы GET и HEAD. Если сервер не распознал указанный клиентом метод, то он должен вернуть статус 501 (Not Implemented). Если серверу метод известен, но он не применим к конкретному ресурсу, то возвращается сообщение с кодом 405 (Method Not Allowed). В обоих случаях серверу следует включить в сообщение ответа заголовок Allow со списком поддерживаемых методов.

Кроме методов GET и HEAD, часто применяется метод POST.

  • Заголовки (параметры) HTTP запроса, ответа, сущности

    Все заголовки в протоколе HTTP разделяются на четыре основных группы (в нижеприведенном порядке рекомендуется посылать заголовки получателю):

      General Headers (Основные заголовки) - должны включаться в любое сообщение клиента и сервера.

      Request Headers (Заголовки запроса) - используются только в запросах клиента.

      Response Headers (Заголовки ответа) - только для ответов от сервера.

      Entity Headers (Заголовки сущности) - сопровождают каждую сущность сообщения. В отдельный класс заголовки сущности выделены для того, чтобы не путать их с заголовками запроса или заголовками ответа при передаче множественного содержимого (MIME).

    Все необходимые для функционирования HTTP заголовки описаны в основных RFC . При необходимости можно создавать свои заголовки. Традиционно к именам таких дополнительных заголовков добавляют префикс "X-" для избежания конфликта имён с возможно существующими.

    Строки после главной строки запроса (GET /index.html HTTP/1.1) имеют следующий формат: Параметр: значение. Таким образом задаются параметры запроса. Это является необязательным, все строки после главной строки запроса могут отсутствовать; в этом случае сервер принимает их значение по умолчанию или по результатам предыдущего запроса (при работе в режиме Connection: Keep-Alive).

      Параметр Connection (соединение) - может принимать значения Keep-Alive и close. В HTTP 1.0 за передачей сервером затребованных данных следует разъединение с клиентом, и транзакция считается завершённой, если не передан заголовок Connection: Keep Alive. В HTTP 1.1 сервер по умолчанию не разрывает соединение и клиент может посылать другие запросы. Поскольку во многие документы встроены другие документы - изображения, кадры, апплеты и т.д., это позволяет сэкономить время и затраты клиента, которому в противном случае пришлось бы для получения всего одной страницы многократно соединяться с одним и тем же сервером. Таким образом, в HTTP 1.1 транзакция может циклически повторяться, пока клиент или сервер не закроет соединение явно.

      Параметр User-Agent - значением является "кодовое обозначение" браузера.

      Параметр Accept - список поддерживаемых браузером типов содержимого в порядке их предпочтения данным браузером.

      Параметр Host - имя домена, с которого запрашивается ресурс. Полезно, если на сервере имеется несколько виртуальных серверов под одним IP- адресом. В этом случае имя виртуального домена определяется по этому полю.

      Параметр Last-Modified (модифицирован в последний раз) (W3C Last-Modified) - дата и время последнего изменения документа. Используя его, клиент, подобно случаю с ETag, может обращаться к серверу с запросом "If-Modified-Since" - в этом случае сервер должен сравнить дату последней модификации копии, сохраненной на клиенте, с актуальной датой последней модификации. Если они совпадут, это значит, что копия в кэше клиента не устарела, и повторное скачивание не нужно (код ответа "304 Not Modified"). Last-Modified также необходим для корректной обработки сайта роботами, которые используют информацию о дате модификации страниц в целях сортировки результатов поиска по дате, а также для определения частоты обновляемости Вашего сайта.

    Для SSI документов Apache будет выдавать "Last-Modified" в том случае, если указана директива "XBitHack full" (например, в файле.htaccess)

      Параметр ETag (объектная метка) - появился в HTTP 1.1(W3C ETag). ETag служит для присвоения каждой странице уникального идентификатора, значение которого меняется при изменении страницы (документа). ETag представляет собой хеш («отпечаток») байтов документа, если в документе изменится хоть один байт, то изменится и ETag. ETag используется при кэшировании документа. Этот заголовок сохраняется на клиенте, и в случае повторного обращения к документу позволяет браузеру обратиться к серверу с запросом ‘If-None-Match’, а сервер должен по значению ETag- метки определить, не изменился ли документ(страница), и если нет, ответить кодом ‘304 Not Modified’.

      Параметр Expires (истечение)(W3C Expires) - он сообщает браузеру, какой временной промежуток можно считать, что копия страницы в кэше свежа, и вообще не обращаться к серверу с запросами. Это удобно для таких файлов, о которых вы точно знаете, что они не изменятся ближайший час/день/месяц: фоновая картинка страницы, например.

    Другие заголовки HTTP:

      HTTP_X_FORWARDED_FOR

      HTTP_X_FORWARDED

      HTTP_FORWARDED_FOR

    • HTTP_X_COMING_FROM

      HTTP_COMING_FROM

    • HTTP_X_CLUSTER_CLIENT_IP

    • HTTP_XROXY_CONNECTION

      HTTP_PROXY_CONNECTION

      HTTP_USERAGENT_VIA - прокси

    Пример анализа HTTP запроса

    HTTP запрос состоит из трех частей: строки запроса (ответа), раздела заголовка, за которым следует необязательное тело. Заголовки представляют собой простой текст, при этом каждый заголовок отделен от следующего символом новой строки(\r\n), в то время как тело может быть как текстом, так и бинарными данными. Тело отделяется от заголовков двумя символами новой строки.

    Заголовок запроса состоит из главной (первой) строки запроса и последующих строк, уточняющих запрос в главной строке. Последующие строки также могут отсутствовать.

    Клиент инициирует транзакцию следующим образом:

      Клиент устанавливает связь с сервером по назначенному номеру порта, официальный номер порта по умолчанию - 80. Затем клиент посылает запрос документа, указав метод, адрес документа и номер версии HTTP. Например, в главной строке запроса GET /index.html HTTP/1.1

      используется метод GET , которым с помощью версии 1.1 HTTP запрашивается документ index.html.

      Клиент посылает информацию заголовка (необязательную, заголовок host обязателен), чтобы сообщить серверу информацию о своей конфигурации и данные о форматах документов, которые он может принимать. Вся информация заголовка указывается построчно, при этом в каждой строке приводится имя и значение. Например, приведённый ниже заголовок, посланный клиентом, содержит его имя и номер версии, а также информацию о некоторых предпочтительных для клиента типах документов: Host: list.mail.ru User-Agent: Mozilla/5.0 (Ubuntu; X11; Linux x86_64; rv:8.0) Gecko/20100101 Firefox/8.0 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

      Завершается заголовок пустой строкой.

      Послав запрос и заголовки, клиент может отправить и дополнительные данные, например, для CGI скриптов.

    Сервер отвечает на запрос клиента следующим образом:

      Первая часть ответа сервера - строка состояния, содержащая три поля: версию HTTP, код состояния и описание. Поле версии содержит номер версии HTTP, которой данный сервер пользуется для передачи ответа. Код состояния - это трехразрядное число, обозначающее результат обработки сервером запроса клиента. Описание, следующее за кодом состояния, представляет собой просто понятный для человека текст, поясняющий код состояния. Например, строка состояния HTTP/1.1 304 Not Modified

      говорит о том, что сервер для ответа использует версию HTTP 1.1. Код состояния 304 означает, что клиент запросил документ методом GET, использовал заголовок If-Modified-Since или If-None-Match и документ не изменился с указанного момента.

      После строки состояния сервер передает клиенту информацию заголовка, содержащую данные о самом сервере и затребованном документе. Ниже приведен пример заголовка: Date: Thu, 15 Dec 2011 09:34:15 GMT Server: Apache/2.2.21 (Debian) X-Powered-By: PHP/5.3.8-1+b1 Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Vary: Accept-Encoding Content-Encoding: gzip Keep-Alive: timeout=5, max=100 Connection: Keep-Alive Content-Type: text/html; charset=utf-8

      Завершает заголовок пустая строка.

      Если запрос клиента успешен, то посылаются затребованные данные. Это может быть копия файла или результат выполнения CGI- программы. Если запрос клиента удовлетворить нельзя, передаются дополнительные данные в виде понятного для пользователя разъяснения причин, по которым сервер не смог выполнить данный запрос.

    HTTP status code

    Код состояния HTTP (HTTP status code) является частью первой строки ответа сервера. Он представляет собой целое число из трех цифр. Первая цифра указывает на класс состояния. За кодом ответа обычно следует отделённая пробелом поясняющая фраза на английском языке, которая разъясняет человеку причину именно такого ответа.

    Клиент может не знать все коды состояния, но он обязан отреагировать в соответствии с классом кода. В настоящее время выделено пять классов кодов состояния:

      1xx : Informational (Информационные). Информационные коды состояния, сообщающие клиенту, что сервер пребывает в процессе обработки запроса. Реакция клиента на данные коды не требуется;

      2xx : Success (Успешно).

      1. 200 OK (Хорошо). Появился в HTTP/1.0. Успешный запрос ресурса. Если клиентом были запрошены какие-либо данные, то они находятся в заголовке и/или теле сообщения.

      3xx : Redirection (Перенаправление(переадресация)). Коды класса 3xx сообщают клиенту, что для успешного выполнения операции необходимо сделать другой запрос (как правило по другому URI). Из данного класса пять кодов 301, 302, 303, 305 и 307 относятся непосредственно к перенаправлениям (редирект). Адрес, по которому клиенту следует произвести запрос, сервер указывает в заголовке Location. Многие клиенты при перенаправлениях с кодами 301 и 302 ошибочно применяют метод GET ко второму ресурсу несмотря на то, что к первому запрос был с иным методом. Чтобы избежать недоразумений в версии HTTP/1.1 были введены коды 303 и 307 вместо 302. Изменять метод запроса нужно только если сервер ответил 303. В остальных случаях следующий запрос производить с исходным методом.

      1. 302 Found (Найдено). Введено в HTTP/1.0. Запрошенный документ временно доступен по другому URI , указанному в заголовке в поле Location.

      4xx : Client Error (Ошибка клиента). Класс кодов 4xx предназначен для указания ошибок со стороны клиента. При использовании всех методов, кроме HEAD , сервер должен вернуть в теле сообщения гипертекстовое пояснение для пользователя.

      1. 404 Not Found (Не найдено). Появился в HTTP/1.0. Сервер понял запрос, но не нашёл соответствующего ресурса по указанному URI .

      5xx : Server Error (Ошибка сервера)

    Ссылки по теме HTTP 1.1

    HTTP/2

    HTTP/2 (изначально HTTP/2.0) - вторая крупная версия сетевого протокола HTTP. Протокол основан на SPDY (HTTP-совместимый протокол, разработанный Google).

    Протокол HTTP/2 является бинарным. По сравнению с предыдущим стандартом изменены способы разбития данных на фрагменты и транспортирования их между сервером и клиентом.

    В HTTP/2 сервер имеет право послать то содержимое, которое ещё не было запрошено клиентом. Это позволит серверу сразу выслать дополнительные файлы, которые потребуются браузеру для отображения страниц, без необходимости анализа браузером основной страницы и запрашивания необходимых дополнений.

6.1 Служба WWW

Служба WWW (World Wide Web) - предназначена для обмена гипертекстовой информацией.

Проект был предложен в 1989 году. В 1993 появился первый браузер.

WWW построена по схеме "клиент-сервер".

Браузер (Internet Explorer, Opera ...) является мультипротокольным клиентом и интерпретатором HTML. И как типичный интерпретатор, клиент в зависимости от команд (тегов) выполняет различные функции. В круг этих функций входит не только размещение текста на экране, но обмен информацией с сервером по мере анализа полученного HTML-текста, что наиболее наглядно происходит при отображении встроенных в текст графических образов.

Сервер HTTP (Apeche, IIS ...) обрабатывает запросы клиента на получение файла (в самом простом случае).

Взаимодействие клиент и сервера по протоколу HTTP.

В начале служба WWW базировалась на трех стандартах:

    CGI (Common Gateway Interface) - универсальный интерфейс шлюзов. Создан для взаимодействия HTTP - сервера с другими программами, установленными на сервере (например, СУБД).

6.2 Протокол HTTP

Первый документ (но не стандарт) - RFC1945 (Hypertext Transfer Protocol -- HTTP/1.0 T. Berners-Lee, R. Fielding, H. Frystyk May 1996)

Некоторые возможности программы:

    задание глубины сканирования сайта, и внешних ссылок

    задание типа файлов (расширение) для скачивания, например можно скачать только графику.

    выставить лимит по размеру файла.

    сканирование графических карт.

    задание расписания работы, встроенный Scheduler.

    задание название клиента, если есть ограничение для некоторых клиентов.

    задание количества одновременно скачиваемых файлов.

Цель лекции: сформировать представление о функционировании протокола HTTP/HTTPS.

HTTP (HyperText Transfer Protocol) – один из наиболее важных протоколов, который обеспечивает передачу данных через интернет. Протокол HTTP находится на седьмом, прикладном уровне модели OSI и работает на основе протокола TCP.

Поскольку протокол HTTP находится на прикладном уровне, прикладные приложения могут использовать непосредственно его для организации сетевого взаимодействия. Кроме того, протокол HTTP является важнейшей частью веб-приложений. В этом случае браузер, используя возможности HTTP, взаимодействует с сервером для получения необходимых данных.

Протокол HTTP предполагает передачу данных в режиме "запрос-ответ" . При этом в рамках такого взаимодействия могут передаваться данные практически любого типа – обычный текст, гипертекст (HTML), таблицы стилей, клиентские сценарии, изображения, документы в различных форматах, бинарная информация и т.д.

В рамках протокола HTTP всегда четко выделяется клиент и сервер. Клиент всегда является инициатором взаимодействия. Сервер, в свою очередь, прослушивает все входящие соединения и обрабатывает каждое из них. Поскольку HTTP-взаимодействие функционирует по схеме "запрос-ответ", то для инициации сеанса передачи данных необходимо сгенерировать HTTP-запрос. В рамках этого запроса клиент описывает то, какой ресурс он хочет получить от сервера, а также указывает различные дополнительные параметры. После этого запрос отправляется серверу и тот, в свою очередь, обрабатывает запрос и генерирует HTTP-ответ, в котором содержится служебная информация и содержимое того ресурса, который был запрошен. В целом схематически процесс можно изобразить следующим образом.


HTTP-запрос и HTTP-ответ сходны по своей структуре и называются HTTP-сообщениями . Фактически, все взаимодействие в рамках протокола HTTP сводится к пересылке HTTP-сообщений. Каждое HTTP-сообщение является обычной текстовой информацией, представленной в определенном формате. Давайте поподробнее рассмотрим формат HTTP-сообщения.

Каждое HTTP-сообщение состоит из нескольких строк. Первой строкой всегда идет приветственная строка, она существенно различается для HTTP-запроса и HTTP-ответа. Обычно в ней содержится общая информация о запросе. После первой строки в HTTP-сообщении присутствуют HTTP-заголовки – каждый заголовок с новой строки. HTTP-заголовки присутствуют как в HTTP-запросе, так и в HTTP-ответе. Смысл HTTP-заголовков заключается в уточнении HTTP-сообщения для того, чтобы принимающая это HTTP-сообщение сторона могла наиболее точно обработать входящее сообщение. Количество заголовков HTTP-сообщения является переменным и зависит от конкретного HTTP-сообщения. Если отправляющая сторона считает, что этот HTTP-заголовок необходим в этом HTTP-сообщении, то она добавляет его, если нет – то не добавляет. Каждый HTTP-заголовок начинается с новой строки. HTTP-заголовок состоит из имени и значения, имя заголовка определяет его предназначение. После набора HTTP-заголовков следует пустая строка, после которой идет тело HTTP-сообщения. Таким образом, общую структуру HTTP-сообщения можно представить следующим образом.


HTTP-запрос формируется на клиенте и отправляется на сервер с целью получения информации от него. В нем содержится информация о ресурсе, который необходимо загрузить, а также дополнительные сведения. Первая строка содержит метод запроса (который мы рассмотрим далее в этой лекции), имя ресурса (с указанием относительного пути на сервере), а также версию протокола. Например, вид приветственной строки может быть определен как "GET /images/corner1.png HTTP/1.1 ". Такой запрос обращается к серверу с требованием выдать методом GET изображение, расположенное в папке "images " и имеющее название "corner1.png ". HTTP-заголовки имеют важное значение для HTTP-запроса, поскольку в них указывается уточняющая информация о запросе – версия браузера, возможности клиента принимать сжатое содержимое, возможности кэширования и другие важные параметры, которые могут влиять на формирование ответа. В теле HTTP-запроса обычно содержится информация, которую необходимо передать на сервер. Например, если требуется загрузить файл на сервер, то содержимое файла будет находится в теле HTTP-запроса. Однако, размещение данных в теле HTTP-запроса допускается не для всех HTTP-методов. Например, тело HTTP-запроса всегда пустое, если используется метод GET . Таким образом, стандартный HTTP-запрос может выглядеть следующим образом.


В приведенном HTTP-запросе клиент обращается к серверу "microsoft.com ", запрашивает ресурс "images/corner.png " и указывает, что он способен принимать сжатое содержимое по алгоритму "gzip " или "deflate ", его языком является английский язык и указывает версию своего браузера. Как было отмечено ранее, количество и набор заголовков может существенно отличаться. Можно привести другой пример HTTP-запроса.


Этот запрос отличается от предыдущего тем, что в нем используется метод POST , который также загружает данные на сервер. При этом сами данные содержаться в теле HTTP-запроса после пустой строки.

HTTP-ответ генерируется веб-сервером в ответ на поступивший HTTP-запрос. По своей структуре он схож с HTTP-запросом, но имеет определенные отличия. Главное отличие содержится в первой строке. Вместо имени запрашиваемого ресурса и метода запроса в ней указывается статус ответа. Статус указывает на то, насколько успешно выполнился HTTP-запрос. Например, в случае, если документ найден на сервере и может быть выдан клиенту, то статус имеет значение "ОК ", которое говорит о том, что запрос выполнился успешно. Однако, могут появляться исключительные ситуации – например, документ отсутствует на сервере или у пользователя отсутствуют права на получение ресурса. Набор всевозможных статусных сообщений HTTP-ответа мы рассмотрим далее в этой лекции. Таким образом, первая строка HTTP-ответа может принимать значение "HTTP/1.1 200 OK ". HTTP-заголовки в HTTP-ответе также являются важным элементом. Они характеризуют содержимое, которое передается клиенту. Например, в этих HTTP-заголовках может содержаться информация о типе содержимого (HTML-документ, изображение и т.д.), длине содержимого (размер в байтах), дате модификации, режиме кэширования и др. Все эти заголовки влияют на способ отображения данных на клиенте, а также устанавливают правила хранения данных в клиентском кэше. Типичный вид HTTP-ответа может быть следующим.


В приведенном примере сервер указывает, что ресурс найден, его тип – HTML-документ, а также указывает размер и дату модификации. После пустой строки идет содержимое HTML-документа, т.е. по сути то, что запрашивал клиент. Как и в случае с HTTP-запросом, в HTTP-ответе количество заголовков может изменяться на усмотрение веб-сервера.

При рассмотрении структуры HTTP-запроса было затронуто понятие метода HTTP-запроса . Метод HTTP-запроса определяет каким образом будет обрабатываться указанный HTTP-запрос, т.е. в каком-то смысле определяет его семантику. Поскольку HTTP-запросы могут иметь самый разнообразный смысл, то указание метода является важной частью построения HTTP-запроса. HTTP-запросы могут иметь следующие значения: запрос ресурса от сервера, создание или изменение ресурса на сервере, удаление ресурса на сервере и т.д.

Наиболее распространенными методами HTTP-запроса являются следующие типы методов:

GET позволяет получить информацию от сервера, тело запроса всегда остается пустым;
HEAD аналогичен GET , но тело ответа остается всегда пустым, позволяет проверить доступность запрашиваемого ресурса и прочитать HTTP-заголовки ответа;
POST позволяет загрузить информацию на сервер, по смыслу изменяет ресурс на сервере, но зачастую используется и для создания ресурса на сервере, тело запроса содержит изменяемый/создаваемый ресурс;
PUT аналогичен POST , но по смыслу занимается созданием ресурса, а не его изменением, тело запроса содержит создаваемый ресурс;
DELETE удаляет ресурс с сервера.

Кроме указанных методов HTTP, существует еще большое количество других методов, определенных в спецификации протокола HTTP. Однако, несмотря на это, браузерами зачастую используются только методы GET и POST . Тем не менее, другие прикладные приложения могут использовать HTTP-методы по своему усмотрению.

Как мы увидели ранее, в составе HTTP-ответа содержится статусный код или код возврата . Этот статус показывает состояние HTTP-ответа, которое получено от сервера. Этот механизм является необходимым при функционировании протокола HTTP, поскольку при обработке запроса могут встречаться различные нестандартные ситуации. Все статусные коды являются трехзначными числами. Кроме того, в составе HTTP-ответа может присутствовать текстовое описание состояния. Все статусные коды делятся на пять групп.

Каждая группа статусных кодов идентифицирует ситуацию, в которой оказался запрос. Группа определяется первым разрядом статусного кода. Например, статусные коды группы 2xx говорят об успехе выполнения HTTP-запроса. Наиболее используемые статусные коды приведены в таблице ниже.

Код Описание
1xx Информационные коды
2xx Успешное выполнение запроса
200 Запрос был обработан успешно
201 Объект создан
202 Информация принята
203 Информация, которая не заслуживает доверия
204 Нет содержимого
205 Сбросить содержимое
206 Частичное содержимое (например, при "докачке" файлов)
3xx Перенаправление (чтобы выполнить запрос, нужны какие-либо действия)
300 Несколько вариантов на выбор
301 Ресурс перемещен на постоянной основе
302 Ресурс перемещен временно
303 Смотрите другой ресурс
304 Содержимое не изменилось
305 Используйте прокси-сервер
4xx Проблема связана не с сервером, а с запросом
400 Некорректный запрос
401 Нет разрешения на просмотр ресурса
402 Требуется оплата
403 Доступ запрещен
404 Ресурс не найден
405 Недопустимый метод
406 Неприемлемый запрос
407 Необходима регистрация на прокси-сервере
408 Время обработки запроса истекло
409 Конфликт
410 Ресурса больше нет
411 Необходимо указать длину
412 Не выполнено предварительное условие
413 Запрашиваемый элемент слишком велик
414 Идентификатор ресурса (URI ) слишком длинный
415 Неподдерживаемый тип ресурса
5xx Ошибки на сервере
500 Внутренняя ошибка сервера
501 Функция не реализована
502 Дефект шлюза
503 Служба недоступна
504 Время прохождения через шлюз истекло
505 Неподдерживаемая версия HTTP

Эти и другие статусные коды используются для передачи информации о статусе запроса от клиента к серверу.

Отличительной особенностью протокола HTTP является то, что в рамках этого протокола информация передается в виде текста. Это означает, что работать с таким протоколом достаточно просто. Кроме того, инженеры по безопасности даже при строгом режиме безопасности оставляют открытым именно протокол HTTP. Поэтому реализация сетевого взаимодействия в рамках протокола HTTP является одним из перспективных направлений.

Однако, несмотря на простоту протокола, существует проблема утечки передаваемой информации. Поскольку информация передается в виде обычного текста, то перехват такой информации осуществляется достаточно просто. В некоторых ситуациях эта проблема не является критичной. Однако, для веб-приложений, работающих с конфиденциальной информацией это достаточно существенный недостаток.

По этой причине существует модификация этого протокола – HTTPS , т.е. протокол HTTP с поддержкой шифрования.

Как известно, существуют классические криптостойкие алгоритмы шифрования, которые шифруют данные на основе существующего ключа. Для шифрования и расшифровки данных используется один и тот же ключ – если кто-либо знает ключ к зашифрованной информации, то он может расшифровать ее. Ключ – это обычная последовательность бит определенной длины. Чем больше длина ключа, тем сложнее взломать алгоритм шифрования. Таким образом, для того, чтобы защитить свою информацию, необходимо хранить в секрете ключ шифрования. Однако, каким образом это обеспечить в рамках взаимодействия по протоколу HTTP? Ведь если передавать этот ключ в открытом виде, то смысл шифрования пропадает. В этом случае используют дополнительно другой вид шифрования – ассиметричный. В этом случае существует пара ключей – открытый и закрытый. С помощью открытого ключа можно только зашифровать информацию, а с помощью закрытого – расшифровать. Обычно при таком подходе закрытый ключ хранится в секрете, а открытый ключ является общедоступным. Однако, ассиметричный алгоритм работает медленнее, чем симметричный, поэтому его используют для первоначального обмена симметричными ключами. Давайте рассмотрим весь алгоритм работы зашифрованного соединения по HTTP.


При обращении клиента к серверу по защищенному каналу сервер хранит открытый и закрытый ключ. В начальный момент времени сервер передает клиенту открытый ключ ассиметричного шифрования. Клиент случайным образом генерирует ключ симметричного шифрования и шифрует его с помощью открытого ключа, полученного от сервера. После этого клиент отправляет зашифрованный ключ на сервер и в этот момент времени клиент и сервер имеют одинаковые ключи для симметричного шифрования. Далее идет HTTP-взаимодействие, которое шифруется с помощью этого симметричного ключа. Симметричный ключ остается в секрете и не может быть перехвачен, поскольку закрытый ключ (которым можно расшифровать первое сообщение, содержащее симметричный ключ) остается в секрете на сервере. Таким образом, обеспечивается конфиденциальность и целостность передаваемых данных по протоколу HTTP

Краткие итоги

Все веб-приложения работают на основе протокола HTTP. Протокол HTTP передает текстовую информацию и работает в режиме "запрос-ответ". HTTP-запрос и HTTP-ответ имеют строго определенную структуру – привественная строка, заголовки и тело сообщения. Количество HTTP-заголовков переменное. HTTP-заголовки от тела сообщения отделяет пустая строка. Каждый HTTP-запрос отправляется на сервер в рамках HTTP-метода. HTTP-метод определяет семантику запроса (получить ресурс, добавить, изменить, удалить и т.д.). В HTTP-ответе кроме служебной информации и полезных данных, отправляется статус запроса, который информирует клиента об успешности выполнения запроса. Все статусные коды делятся на группы. Поскольку данные, передаваемые по протоколу HTTP можно перехватить, то он не обеспечивает конфиденциальности передаваемой информации. Если подобный уровень безопасности необходим, то нужно использовать протокол HTTPS, который обеспечивает шифрование передаваемой информации на основе комбинирования симметричного и ассиметричного алгоритмов шифрования.

Для World Wide Web. Такие протоколы представляют собой структурированный текст, который использует логические связи (гиперссылки) между узлами, содержащими определенные данные. Таким образом, это способ обмена или передачи гипертекста.

HTTP-протокол работает как функция запрос-ответ в клиентско-серверной модели вычислений. Так, веб-браузер выступает в роли клиента, а хостинг сайта является сервером. Клиент отправляет сообщение запроса HTTP на сервер, предоставляющий определенные ресурсы (например, HTML-файлы и другие материалы), а затем возвращает ответное сообщение. Ответ содержит информацию о запросе, и также может содержать запрошенное содержимое в теле сообщения.

Браузер является основным примером агента пользователя (клиента). Другие типы пользовательских агентов включают в себя программное обеспечение, используемое для индексации поисковыми провайдерами, мобильные приложения и другие ресурсы, которые используют или отображают веб-контент.

HTTP-протокол предназначен для обеспечения промежуточных элементов сети для повышения или обеспечения связи между клиентами и серверами. Сайты с большим трафиком часто извлекают для себя выгоду из кэша веб-серверов, которые отображают контент от имени вышестоящих ресурсов, уменьшая время загрузки. Кэш веб-браузеров при этом позволяет пользователю уменьшить сетевой трафик. Прокси-сервера, которые использует HTTP-протокол в локальной сети, могут обеспечить связь для клиентов, не допускающих глобальную маршрутизацию адреса, путем ретрансляции сообщений с внешних серверов.

Сессия HTTP представляет собой последовательный процесс из запросов и ответов. Клиент инициирует запрос путем создания TCP-подключения к определенному порту на сервере, а последний прослушивает этот порт и ждет сообщение с запросом. При его получении сервер посылает в ответное сообщение. Тело этого сообщения, как правило, представляет собой запрошенный ресурс, хотя может быть отображено и сообщение об ошибке или другая информация.

Если рассматривать назначение протокола HTTP, следует отметить, что он определяет методы с целью указать нужное действие, выполняемое по выявленным ресурсам. При этом вид отображаемой информации (ранее существовавшие данные или генерируемые динамически) зависит от реализации сервера. Часто такой ресурс соответствует файлу или сценарию, расположенному на хостинге.

Некоторые методы, которые использует протокол передачи гипертекста HTTP, предназначены только для поиска информации и при этом не должны изменять состояние сервера. Другими словами, они не оказывают серьезного воздействия, за исключением относительно безвредных эффектов - кэширования или увеличения статистики посещений.

С другой стороны, HTTP-протокол может применять и такие методы, которые предназначены для действий, способных оказать влияние либо на сервер, либо на другие внешние ресурсы - активизировать финансовые операции или выполнить передачу электронной почты. Изредка такие способы используются веб-роботами или некоторыми сайтами и могут делать запросы вне зависимости от основной задачи.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!