Технологии беспроводных сетей. Классификация беспроводных технологий

асист| . каф| . КСМ Ковальов М .П., ст.гр . КСМ-06-1 Ваулин Д.К.

Криворізький технічний університет, Україна

Современные беспроводные сетевые технологии

Данная статья посвящена обзору современных стандартовв беспроводных сетевых технологиях. В статье описаны все положительные и отрицательные качества этого варианта решения задач по передачепакетных данных на расстояние. Также выясним группы современных беспроводных сетевых технологий и определены лучшие стандарты в своей группе, лучше всего подходящие для передачи пакетных данных по «воздушному» пути.

Беспроводные сетевые технологии

Выбор беспроводной сетевой технологии зависит от нужд вашего предприятия, его бюджета и планов на будущее. Предположим, прямое соединение объектов вашего предприятия медным или волоконно-оптическим кабелем невозможно (например, из-за отсутствия соответствующего разрешения), или слишком дорого, или нагрузка на вашу сеть увеличилась до такой степени, что использование ее полосы пропускания достигло критического уровня, или менеджер по маркетингу предлагает вам соединить сеть центрального офиса с сетями разбросанных по большой территории магазинов. Какой бы трудной ни была ситуация со связью на вашем предприятии, беспроводные сетевые технологии помогут вам найти нужное решение.

Беспроводные сетевые технологии можно поделить на три основных типа: мобильная связь, беспроводная связь между зданиями и связь внутри них . Мы проанализируем достоинства и недостатки технологии каждого типа, дадим информацию о ценах на соответствующее коммуникационное оборудование и рассмотрим возможные приложения беспроводной связи.

Мобильная связь

Беспроводные сетевые технологии для мобильных пользователей широко распространены и недороги в реализации. Примерами таких технологий являются пакетная радиосвязь, пакетная цифровая передача данных по сотовой сети (Cellular Digital Packet Data - CDPD) и сотовая связь с коммутацией каналов. Хотя эти технологии обеспечивают наименьшую скорость передачи данных (по сравнению с другими беспроводными сетевыми технологиями), однако реализующие их системы действуют по всему миру. Ряд технологий, например усовершенствованная специализированная мобильная радиосвязь (Enhanced Specialized Mobile Radio - ESMR), служба персональной связи (Personal Communications Services - PCS) и двусторонняя спутниковая связь, еще только начинают появляться на рынке.

Сотовая связь с коммутацией каналов

Как и CDPD, сотовая связь с коммутацией каналов использует существующие аналоговые сотовые сети. Отличие состоит в том, что в данном случае вместо коммутации пакетов данных используется обычная коммутация каналов сотовой сети. Для передачи данных пользователь подключает сотовый модем к своему ПК и сотовому телефону, поддерживающему передачу данных, и устанавливает коммутируемое соединение точно так же, как при работе со старым добрым аналоговым модемом.

Если вам необходимо передавать длинные файлы, то лучший выбор - сотовая связь с коммутацией каналов; пакетная радиосвязь и CDPD больше подходят для пересылки коротких сообщений. Сотовая связь с коммутацией каналов - довольно медленный вид связи. Данные передаются на скоростях до 14,4 Кбит/с и лишь в отдельных зонах обслуживания скорость увеличивается до 20 Кбит/с. В крупных городах и при удалении от базовой станции скорость передачи может снижаться. Рассматриваемая технология - самая доступная, ведь более 95% территории США охвачено сотовыми сетями.

Беспроводная связь между зданиями

Иногда для коммуникаций на небольшие расстояния сетевой администратор может рассматривать системы беспроводной связи как альтернативу прямым кабельным соединениям или арендованным линиям. Эта альтернатива привлекательна по нескольким причинам: такие системы обеспечивают довольно высокую скорость передачи данных, имеют хорошую расширяемость и дешевле в эксплуатации.Технологии беспроводной связи - такие, как инфракрасная, лазерная, узкополосная микроволновая (СВЧ) и широкополосная (с использованием спектральной модуляции), - обеспечивают передачу данных на скоростях до 155 Мбит/с. Затраты на приобретение оборудования для беспроводных линий связи обычно ниже затрат, связанных с использованием арендованной линии, и намного ниже затрат на прокладку волоконно-оптического или коаксиального кабеля.

Классификация технологий

Разделим стандарты беспроводных сетевых технологий условно на 2 группы:

· Технологии мобильной связи

·

Технологии мобильной связи

Это технологии, которые активно используются в сотовой и других мобильных связях.

3 G - цифровая пакетная технология, которая используется для описания третьего поколения мобильной телефонии, предоставляющей услуги доступа к видео контента и широкополосному интернету для мобильных устройств. Первое поколение было представлено аналоговыми сотовыми телефонами, второе - цифровыми сотовыми сетями.

Использует стандарты W-CDMA(UMTS), CDMA2000, TD-CDMA/TD-SCDMA, DECT, UWC-136.

.Bluetooth – технология мобильной связи, работающая на частотах 2400-2483.5 MHz. Эти частоты выбраны не случайно, они являются открытыми и свободными от всякого лицензирования в большинстве стран мира.. Используемые частоты определяют возможности Bluetooth по передаче данных. Ширина канала для Bluetooth устройств составляет 723.2 кб/с в асинхронном режимы (впрочем, даже в этом режиме всё-таки остаётся до 57.6 кб/с для одновременной передачи в обратном направлении), или 433.9 кб/с в полностью синхронном режиме.

Расстояние на которое может быть установлено Bluetooth соединение невелико, и составляет от 10 до 30 метров. В настоящее время ведутся работы над увеличением этого расстояния, хотя бы до 100 метров.

Главной особенностью Bluetooth является то, что различные Bluetooth устройства соединяются с друг другом автоматически, стоит им только оказаться в пределах досягаемости. У пользователя не болит голова о кабелях, драйверах, или чём-либо ещё, всё что от него требуется, это позаботиться о том, что бы Bluetooth устройства находились достаточно близко друг к другу, обо всём остальном должны позаботиться сами Bluetooth устройства и программное обеспечение.

Технологии беспроводной связи между объектами и внутри них

Это технологии, которые активно используются для организации связи между разными зданиямиа также внутри них.

WiMAX - сокращение от worldwide interoperability for microwave access - это технология предоставления беспроводного широкополосного доступа в интернет. WiMAX основывается на стандарте IEEE 802.16..

Сети WiMAX могут работать в двух вариантах доступа: фиксированном и мобильном

Мобильный WIMAX дает возможность пользователю получать как фиксированный доступ (похожий на привычный xDSL, только без проводов), так и выход в Сеть из любого места в пределах зоны покрытия или даже в движении (что-то очень грубо говоря, наподобие существующего сотового стандарта GPRS, только сильно быстрее).

Стандартом 802.16 определены несколько режимов работы сетей WiMAX:

· Fixed WiMAX - фиксированный доступ;

· Nomadic WiMAX - сеансовый доступ;

· Portable WiMAX - доступ в режиме перемещения;

· Mobile WiMAX - мобильный доступ.

Wi-Fi -это система более короткого действия, обычно покрывающая сотни метров, которая использует нелицензированные диапазоны частот для обеспечения доступа к сети. Обычно Wi-Fi используется пользователями для доступа к их собственной локальной сети, которая может быть и не подключена к Интернет. Если WiMAX можно сравнить с мобильной связью, то Wi-Fi скорее похож на стационарный беспроводной телефон.

В Wi-Fi сетях все пользовательские станции, которые хотят передать информацию через точку доступа (АР), соревнуются за «внимание» последней. Такой подход может вызвать ситуацию при которой связь для более удалённых станций будет постоянно обрываться в пользу более близких станций. Подобное положение вещей делает затруднительным использование таких сервисов как Voice over IP (VoIP), которые очень сильно зависят от непрерывного соединения. Wi-Fiиспользует 802.11 - е семейство спецификаций, разработанных EEE для беспроводных локальных сетей (wireless LAN) Существуют такие разновидности спецификаций:

Заключение.

В данной статье были рассмотрении разновидности современных беспроводных сетевых технологий. Было приведено их описание, рассмотрены характеристики,особенности работы а также среда использования. Подводя итоги данной статьи можно сказать, что на сегодняшнее время беспроводные сетевые технологии имеют весьма хороший потенциал для развития а также имеют рад превосходств по сравнению с другими сетевыми технологиями. Отметим,что в связи с бурным развитием электронных технологий беспроводные технологии очень скоро могут стать самым лучшим, качественным а главное эффективным решением в сетевых технологиях.

Литература

    высокоскоростные беспроводные технологии связи - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN high speed wireless technologies …

    Эту страницу предлагается переименовать в Беспроводная вычислительная сеть. Пояснение причин и обсуждение на странице Википедия:К переименованию/1 декабря 2012. Возможно, её текущее название не соответствует нормам современного… … Википедия

    Беспроводная сенсорная сеть это распределённая, самоорганизующаяся сеть множества датчиков (сенсоров) и исполнительных устройств, объединенных между собой посредством радиоканала. Причем область покрытия подобной сети может составлять от… … Википедия

    - (другие названия: беспроводные ad hoc сети, беспроводные динамические сети) децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать… … Википедия

    Беспроводные компьютерные сети это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Содержание 1 Применение 2 Безопасность 3 … Википедия

    Беспроводные ad hoc сети децентрализованные беспроводные сети, не имеющие постоянной структуры. Клиентские устройства соединяются на лету, образуя собой сеть. Каждый узел сети пытается переслать данные предназначенные другим узлам. При этом… … Википедия

    беспроводные абонентские линии - Наиболее часто используемое обозначение технологии абонентского доступа. Тематики информационные технологии в целом EN Wireless Local LoopWLL … Справочник технического переводчика

    беспроводные цифровые абонентские линии - Применение технологии высокоскоростной передачи данных по кабельным линия xDSL для построения цифровых сетей беспроводного доступа. Эквивалентные термины AirDSL и skyDSL. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый… … Справочник технического переводчика

    беспроводные мультимедиа услуги и услуги по обмену сообщениями - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN wireless multimedia and messaging servicesWIMS … Справочник технического переводчика

    Эту страницу предлагается переименовать в Беспроводная самоорганизующаяся сеть. Пояснение причин и обсуждение на странице Википедия:К переименованию/1 декабря 2012. Возможно, её текущее название не соответствует нормам современного… … Википедия

Книги

  • , В. М. Власов, Б. Я. Мактас, В. Н. Богумил, И. В. Конин. В учебном пособии подробно описана технология спутниковой навигации в применении к задачам мониторинга и контроля движения автомобильного транспорта. Рассмотрена технология определения…
  • Беспроводные технологии на автомобильном транспорте. Глобальная навигация и определение местоположения транспортных средств. Учебное пособие. Гриф МО РФ , Власов В.М.. В учебном пособии подробно описана технология спутниковой навигации в применении к задачам мониторинга и контроля движения автомобильного транспорта. Рассмотрена технология определения…

Технологии беспроводных сетей

По прочтении этой главы и после выполнения практических заданий вы сможете:

· рассказать о современных технологиях беспроводных сетей;

· изложить историю развития беспроводных сетей и их преимущества;

· описать технологии радиосетей;

· рассказать о радиосетях стандарта 802.11;

· описать альтернативные технологии радиосетей (такие как Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol);

· обсудить беспроводные технологии, использующие инфракрасное излучение;

· рассказать о микроволновых сетях;

· описать беспроводные сети, использующие низкоорбитальные (LEO) спутники Земли.

Беспроводные сети представляют собой развивающуюся технологию, вызывающую большой интерес по многим причинам. Самой очевидной причиной является то, что такие сети обеспечивают мобильность портативных и ручных компьютерных устройств, позволяя пользователю забыть о кабелях. Другая причина состоит в том, что в настоящее время беспроводные технологии стали более надежными и в некоторых ситуациях их развертывание обходится дешевле, чем создание кабельных сетей. Имеется несколько альтернативных кабелю беспроводных сред для передачи сетевых пакетов: радиоволны, инфракрасное (ИК) излучение и микроволны (волны СВЧ-диапазона). При использовании всех перечисленных технологий сигналы передаются по воздуху или в атмосфере, что делает их хорошей альтернативой в тех случаях, когда трудно или невозможно применить кабель.

В этой главе вы познакомитесь со многими типами беспроводных сетевых коммуникаций. Сначала вы узнаете, какие беспроводные сети используются настоящее время, а затем ознакомитесь с краткой историей таких сетей т ix преимуществами. После общего описания сетей, использующих радио волны, будет подробнее рассказано о распространенном стандарте беспроводных сетей IEEE 802.11. Также вы узнаете об альтернативных технологиям радиосетей: Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol затем будут описаны технологии на базе рассеянного ИК-излучения, обеспечивающие относительно защищенные беспроводные коммуникации, наконец, будет рассказано о том, как в сетях применяются микроволновые технологии на базе наземных и спутниковых каналов (включая сети широко орбитальных спутников Земли).

Современные технологии беспроводных сетей

В настоящее время для создания беспроводных сетей применяются следующие технологии:

· технологии, использующие радиоволны;

· технологии на базе ИК-излучения;

· микроволновые (СВЧ) технологии;

· сети на базе низкоорбитальных спутников Земли (специальный космический проект с использованием СВЧ-волн).

Технологии, использующие радиоволны, очень распространены и представляют собой быстро растущий сектор беспроводных сетевых коммуникации. Сюда же входит стандарт беспроводных сетей 802.11, а также альтернатив промышленные стандарты, такие как Bluetooth, HiperLAN и НотеShared Wireless Access Protocol (SWAP).

Технологии на базе ИК-излучения не так распространены, как радиосетям однако они имеют некоторые преимущества, поскольку позволяют создавав относительно более защищенные беспроводные сети (т. к. сигнал сложнее перехватить незаметно). Обе технологии (радиоволны и ИК-излучение) используются для организации коммуникаций на малых расстояниям в пределах офиса, здания или между зданиями.

Микроволновые (СВЧ) технологии применяются для связи на больших расстояниях и могут обеспечить сетевые коммуникации между континентами через спутники).

Сети на базе низкоорбитальных спутников являются еще одной разновидностью беспроводных сетей, на основе которых в определенный момента может быть создана "всемирная сеть", доступная во всех точках планеты.

Обо всех перечисленных технологиях будет рассказано в этой главе. Однако сначала мы обратимся к истории развития беспроводных сетей и узнаем об их преимуществах.

Краткая история беспроводных сетей и их достоинства

Историю беспроводных сетей можно рассматривать формально и неформально. Неформальным прародителем беспроводных сетей является любительская радиосвязь, операторы которой получают от Федеральной комиссии связи (FCC) лицензии на передачу речи, азбуки "Морзе, данных, спутниковых и видеосигналов с использованием волн радио - и СВЧ-диа-пазонов. Хотя радиолюбительство обычно считается хобби, Федеральная комиссия связи рассматривает его как важный источник идей и опыта для развития коммуникаций.

Примечание

Радиоволны и СВЧ-волны представляют собой один из диапазонов спектра электромагнитных волн, который включает в себя видимый свет, радиоволны, ИК-излучение, рентгеновские лучи, СВЧ-волны (микроволны) и гамма-лучи. Все это – разновидности электромагнитного излучения, которое распространяется в атмосфере Земли и в космосе. Оно имеет и свойства волны, и свойства частицы. Дополнительную информацию о спектре электромагнитных волн можно найти по адресам

http :// imagine . gsfc . nasa . gov / docs / science / knowJ 1/ emspectrum . html и http :// imagine . gsfc . nasa . gov / docs / science / knowJ 2/ emspectrum . html .

В 1980-х годах лицензированные радиолюбители получили от Федеральной комиссии связи разрешение на передачу данных на нескольких радиочастотах в диапазонах от 50,1–54,0 МГц (нижний диапазон) до 1240–1300 МГц (верхний диапазон). Большинству людей эти частоты знакомы, т. к. они используются для передачи музыки радиостанциями AM - и FM-диапазонов. Эти частоты представляют собой лишь малую часть возможных радиочастот, на которых можно передавать сигналы. Основной единицей измерения радиочастоты является герц (Гц) (Hertz (Hz)). В технике одному герцу соответствует один период переменного напряжения или излученного сигнала за секунду.

Примечание

Радиочастоты представляют диапазон волн с частотой свыше 20 кГц, с помощью которых электромагнитный сигнал может излучаться в пространство.

С тех пор, когда в начале 1980-х годов компания IBM создала персональный компьютер, прошло немало времени, пока радиолюбители не связали персональные компьютеры в сеть, используя радиоволны (обычно в более высоких диапазонах 902–928 МГц и 1240–1300 МГц). Для этого они создал устройство, названное контроллером терминального узла (terminal node controller, TNC). Это устройство помещалось между компьютером и приемопередатчиком и служило для преобразования компьютерного цифрового сала в аналоговый сигнал, усиливаемый приемопередатчиком и излучаемый через антенну. Полученная в результате технология была названа пакетной радиосвязью. Обнаруженный радиолюбителями факт, что пакетная радиосвязь хорошо работает на частотах 902 МГц и выше, был вскоре проанализирован компаниями, предоставляющими коммерческие услуги беспроводных сетей. В 1985 году Федеральная комиссия связи разрешила для коммерческого использования в беспроводных компьютерных сетях частотой для промышленных, научных и медицинских приложений (Industrial, ScietfJtitle and Medical, ISM), которые можно применять для маломощных нелицензируемых общедоступных коммуникаций на фиксированных частотах» диапазоне от 902 МГц до 5,825 ГГц. В Телекоммуникационном а 1996 года Конгресс подготовил следующий этап в развитии беспроводный! коммуникаций, закрепив понятие "узел (местоположение) беспроводной связи" и установив для нее стандарты, а также создав стимулы для дальнейшего развития телекоммуникационных технологий, в т. ч. и беспроводный коммуникаций (дополнительную информацию можно найти по адрес www. fcc. gov/telecom. html). Вскоре после этого институт IEEE создал групп по стандартам беспроводных сетей 802.11, которая отвечала за первый стандарт 802.11, установленный в 1997 году. В настоящее время беспроводный сети разрабатываются и внедряются для обеспечения многих потребностей в числе которых можно назвать следующие:

· реализация коммуникаций в тех областях, где сложно развернуть кабельную сеть;

· снижение затрат на развертывание;

· обеспечение "произвольного" доступа тем пользователям, которые не могут быть привязаны к определенному кабельному подключению;

· упрощение процедуры создания сетей в небольших и домашних офисах;

· обеспечение доступа к данным, необходимым в конкретной конфигурации

Почему кабельные сети можно использовать не всегда?

В некоторых ситуациях кабельную сеть развернуть сложно и даже невозможно. Рассмотрим такой сценарий. Два здания нужно связать одной сетью однако между ними проходит федеральное шоссе. В таком случае имеется несколько способов организации сети. Во-первых, можно прорыть траншею под шоссе, для чего потребуются большие расходы и перерывы в движении, вызванные рытьем траншеи, прокладкой кабеля, закапыванием траншеи и полным восстановлением дороги. Во-вторых, можно создать региональную сеть, связывающую два здания. Здания можно подключить к линиям Т-1 или к региональной сети Optical Ethernet, воспользовавшись услугами владельца сети общего пользования или местной телефонной компании. Затраты при этом будут меньше, чем при прокладке нового кабеля, однако аренда телекоммуникационных линий потребует постоянных отчислений. В-третьих, можно развернуть беспроводную сеть, для чего понадобятся единовременные расходы на оборудование, а также появятся текущие издержки на управление сетью. Однако все эти затраты будут, скорее всего, наиболее оправданы, если рассматривать большие отрезки времени.

Рассмотрим еще один сценарий. Арендатору большого офиса необходимо развернуть сеть для 77 сотрудников. Владелец помещения запрещает прокладывать постоянную кабельную систему. Данное помещение во всех смыслах устраивает арендатора, кроме того, плата за него ниже, чем в других альтернативных вариантах. Решением проблемы будет создание беспроводной сети.

И, наконец, третий сценарий. Общедоступная библиотека располагается в историческом месте. Несмотря на то, что эта библиотека принадлежит городу, строгие общественные и частные договоры не позволяют руководству библиотеки получить необходимое разрешение на прокладку сетевого кабеля. Библиотека на много лет отстала в создании электронного каталога книг, поскольку не может связать в сеть компьютеры своих сотрудников и справочную службу для своих клиентов. Поэтому руководство библиотеки может решить свои проблемы, развернув беспроводную сеть, позволяющую сохранить целостность здания и не нарушать никакие договоры.

Экономия средств и времени при использовании беспроводных сетей

Затраты и время на создание беспроводной сети могут оказаться меньшими, чем на развёртывание кабельной сети. Например, в старых зданиях часто имеются опасные материалы, скажем, в старых эксплуатационных шахтах, содержащих ничтожное количество хлора, выделяющегося из воздуховодов и асбеста. Поскольку шахты не используются, их можно просто замуровать. Или же можно начать дорогостоящую программу по удалению опасных материалов, чтобы эти шахты можно было использовать для прокладки сетевого кабеля. В такой ситуации намного дешевле замуровать шахты и вместо кабеля развернуть беспроводную сеть.

Можно рассмотреть случай, когда одному университету потребовалась рабочая сеть, поскольку в его развитие были вложены крупные средства. Университет пригласил дорогую консалтинговую компанию, которая выделила

на проект пять человек и организовала 18 новых рабочих мест. За несколько дней до начала работ руководство университета поняло, что для новых сотрудников и консультантов нет сетевых подключений. Прокладывать новые кабели дорого, да к тому же и невозможно в ближайшие несколько месяцев поскольку IT-отдел университета уже перегружен работой. Выход найден в виде беспроводной сети, которая может быть развернута в рекордно короткое время.

Неограниченный доступ к сети

Некоторым пользователям компьютеров доступ к сети нужен практически из любой точки. Рассмотрим, к примеру, большой склад автомобильных частей, в котором необходимо регулярно проводить ревизии, используя СЩ меры штрих-кодов, подключаемые к сети. Беспроводная сеть дает пользователям таких сканеров возможность неограниченного доступа, поскольку пользователи не привязаны к кабельным подключениям. Еще один пример Врач в больнице может носить с собой небольшой портативный компьютер с адаптером беспроводной связи, с помощью которого можно обновлять иа истории болезни, выписывать направления на анализы или организовывая уход за больными.

Упрощение сетевых технологий для новичков

В сфере компьютеризации небольших или домашних офисов беспроводной сетью, на голову выше кабельной разводки. Сети таких офисов могут быть весьма неудовлетворительном состоянии, поскольку они обычно создаются непрофессионалами. В результате может быть выбран кабель не того типа. Кабель может проходить мимо источников радиопомех и электромагнитных излучения или он может оказаться поврежденным (например, передавши под стулом, столом или в дверном проеме). Поэтому пользователя таком офисе может непродуктивно тратить свое время на поиски неработоспособности сети. В такой ситуации беспроводная сеть может оказаться проще в установке и эксплуатации. Как правило, во многих онлайновых компьютерных магазинах пользователей небольших и домашних офисах спрашивают о том, не хотят ли они приобрести беспроводные устройства для организации сети между купленными компьютерами.

Достоинством беспроводных сетей для такого класса пользователей являет то, что в настоящее время стоимость беспроводных устройств вполне умеренная. Беспроводная сеть в сочетании с возможностью автоматическая назначения IP-адресов в системах Windows 2000 и Windows ХР позволяв создать полноценную домашнюю сеть при наличии минимального опыта или даже при его отсутствии.

Совершенствование доступа к данным

Беспроводные сети позволяют значительно усовершенствовать доступ к некоторым типам данных и прикладным программам. Рассмотрим для примера большой университет, в котором на постоянной основе работают десять аудиторов, посещающих каждый день по нескольку подразделений (и площадок) и нуждающихся в доступе к финансовым данным, отчетам и другой информации, имеющейся в этих подразделениях. При наличии портативного компьютера, снабженного адаптером беспроводной сети, аудитор может легко перемещаться между площадками и иметь постоянный доступ к любым финансовым документам. В качестве другого примера можно рассмотреть инженера-химика, работающего в разных точках химического завода. В одной точке он может наблюдать за данными в ходе некоторой реакции производственного цикла. В другой точке ему может потребоваться номенклатура химикатов, чтобы убедиться в наличии компонентов, нужных для запуска другого производственного процесса. В третьей точке этот инженер может обратиться к онлайновой научной библиотеке компании. Беспроводный доступ позволит ему легко справиться со всеми перечисленными задачами.

Организации, поддерживающие технологии беспроводных сетей

Существует несколько организаций, занимающихся продвижением беспроводных сетей. Одной из таких организаций, являющейся ценным источником информации по беспроводным сетям, является Wireless LAN Association (WLANA ). Эта ассоциация образована производителями устройств беспроводных сетей, а также заинтересованными компаниями и организациями, в числе которых Alvarion, Cisco Systems, ELAN, Intermec, Intersil, Raylink и Wireless Central. Выполните практическое задание 9-1 и познакомьтесь с ситуациями, в которых можно использовать беспроводные локальные сети, а также с информационными ресурсами, предлагаемыми ассоциацией WLANA.

WINLAB (Wireless Information Network Laboratory) – это расположенный в Университете Рутжерса (Rutgers University) центр исследований в области беспроводных сетей, поддерживаемый несколькими университетами. WINLAB спонсируется из фондов National Science Foundation и работает, начиная с 1989 года. Выполнив практическое задание 9-2, вы узнаете о самых последних исследованиях, выполненных лабораторией WINLAB.

Технологии радиосетей

Сетевые данные передаются с помощью радиоволн подобно тому, как вещает местная радиостанция, однако для сетевых приложений используются волны

гораздо более высоких частот. Например, местная радиостанция АМ-диапазона (средние и длинные волны) может вести вещание на частоте 1290 кГц, поскольку интервал частот для широковещания с амплитудной модуляцией составляет 535–1605 кГц. Интервал частот для FM-вещания (УКВ) имеет границы 88–108 МГц. В США сетевые сигналы передаются на более высоких частотах в интервалах 902-928 МГц, 2,4–2,4835 ГГц или 5-5,825 ГГц.

Примечание

Каждый из упомянутых интервалов частот также называется диапазоном: диапазон 902 МГц, диапазон 2,4 ГГц и диапазон 5 ГГц. Диапазон 902 МГц в первую очередь используется в старых нестандартизованных беспроводных устройствах и далее в книге не рассматривается.

В радиосетях сигнал передается в одном или нескольких направлениях в зависимости от типа используемой антенны. В примере, изображенном на рис. 9.1, сигнал является направленным, поскольку он передается от антенны, расположенной на одном здании, к антенне, расположенной на другом здании. Волна имеет очень малую длину и небольшую мощность (если оператор связи не имеет специальной лицензии от Федеральной комиссии связи на многоваттные коммуникации), т. е. она лучше всего подходит для передач в пределах прямой видимости (line-of-sight transmission) с малым радиусом действия.

При передаче в пределах прямой видимости сигнал передается от одной точки к другой, следуя искривлению Земли, а не отражается от атмосферы, пересекая страны и континенты. Недостатком такого типа передачи является наличие преград в виде больших возвышенностей на поверхности Земли (например, холмы и горы). Маломощный (1 – 10 Вт) радиосигнал может передавать данные со скоростью от 1 до 54 Мбит/с и даже выше.

Для передачи пакетов в оборудовании беспроводных радиосетей чаще всего используется технология работы с расширенным спектром (spread spectrum technology), когда для передачи сигнала с большей полосой пропускания задействуются одна или несколько смежных частот. Интервал частот с расширенным спектром очень высок: 902–928 МГц и намного выше. Коммуникации с расширенным спектром обычно обеспечивают передачу данных со скоростью 1–54 Мбит/с.

Коммуникации с использованием радиоволн позволяют сэкономить средства в тех случаях, когда сложно или очень дорого прокладывать кабель. Радиосети особенно полезны, когда используются портативные компьютеры, которые часто перемещаются. По сравнению с другими беспроводными технологиями, радиосети относительно недороги и просты в установке.

Использование радиоволн в коммуникациях имеет несколько недостатков. Многие сети передают данные со скоростью 100 Мбит/с и выше для организации высокоскоростных коммуникаций при пересылке большого трафика (в том числе и больших файлов). Радиосети пока не могут обеспечить коммуникации с такой скоростью. Другим недостатком является то, что некоторые частоты беспроводной связи используются совместно радиолюбителями, военными и операторами сотовых сетей, в результате чего на этих частотах возникают помехи от различных источников. Естественные препятствия (например, холмы) также могут уменьшить или исказить передаваемый сигнал.

Одна из основных технологий радиосетей описана стандартом IEEE 802.11. Также используются и другие технологии, в число которых входят Bluetooth, HiperLAN и HomeRF Shared Wireless Access Protocol (SWAP). Все эти технологии будут рассмотрены в следующих разделах этой главы.

Радиосети стандарта IEEE 802.11

Для реализации беспроводных коммуникаций используются различные типы радиосетей, однако в плане совместимости и надежности значительные преимущества имеет стандарт IEEE 802.11. Многие пользователи беспроводных сетей применяют устройства, отвечающие этому стандарту, поскольку такие устройства не связаны с нестандартизованными коммуникациями (особенно в нижнем и медленном диапазоне 902–928 МГц, типичном для старых беспроводных устройств) и устройства стандарта 802.11, выпущенные разными производителями, являются взаимозаменяемыми. Такие устройства отвечают открытому стандарту, поэтому различные модели могут взаимодействовать друг с другом, и в них легче реализовать новые функции беспроводной связи. Поэтому разработчику беспроводных сетей важно понимать стандарт IEEE 802.11 и принципы работы устройств, соответствующих этому стандарту.

Стандарт IEEE 802.11 также носит название IEEE Standard for Wireless LANledium Access (MAC) and Physical Layer (PHY) Specifications. Этот стандарта распространяется на стационарные и мобильные станции беспроводным коммуникаций. Стационарной называется станция, которая не перемещается мобильной называется станция, которая может перемещаться быстро, или медленно, как шагающий человек.

Стандарт 802.11 предусматривает два типа коммуникаций. Первый тип синхронные коммуникации, когда передача данных происходит отдельны блоками, начало которых отмечено стартовым разрядом, а конец – стоповым разрядом. Ко второму типу относятся коммуникации, осуществляет в определенных временных рамках, когда сигналу дается определенной для достижения точки назначения, а если сигнал не укладывается Я >то время, то он считается потерянным или искаженным. Временные ограничения делают стандарт 802.11 похожим на стандарт 803.11, согласно которому сигнал также должен достигнуть заданного целевого узла за указанной время. Стандарт 802.11 предусматривает поддержку служб управления сеть пример, протокола SNMP). Также обеспечивается аутентификация сети, стандарт 802.11 ориентирован на использование Канального и Физического уровней модели OSI. На MAC - и LLC-подуровнях Канального уровня определены стандарты на метод доступа (о котором будет рассказано далее этой главе), адресацию и способы проверки данных с использованием контрольных сумм (CRC). На Физическом уровне стандарт 802.11 определял скорости передачи данных на заданных частотах. Также предусмотрены методы (например, технологии с расширенным спектром) для передачи цифровых сигналов с помощью радиоволн и ИК-излучения.

С точки зрения рабочей среды стандарт 802.11 различает беспроводный коммуникации в помещении (комнатные) и на открытом воздухе (наруби). Комнатные коммуникации могут, к примеру, осуществляться в здания офиса, промышленной зоне, магазине или частном доме (т. е. везде, где не распространяются дальше отдельного здания). Наружные коммуникаций могут выполняться в пределах университетского кампуса, спортивной площадки или автостоянки (т. е. там, где передача информации ведется меж зданиями). Далее вы познакомитесь со следующими аспектами, касающимися функционирования беспроводных сетей стандарта 802.11:

· беспроводные компоненты, используемые в сетях IEEE 802.11;

· методы доступа в беспроводных сетях;

· способы обнаружения ошибок при передаче данных;

· коммуникационные скорости, используемые в сетях IEEE 802.11;

· методы обеспечения безопасности;

· использование аутентификации при разрыве соединения;

· топологии сетей IEEE 802.11;

· использование многоячеечных беспроводных локальных сетей.

Компоненты беспроводной сети

В реализации беспроводных коммуникаций обычно участвуют три основных компонента: плата, выполняющая функции приемника и передатчика (трансивера), точка доступа и антенны.

Плата трансивера называется адаптером беспроводной сети (wireless NIC, WNIC), который функционирует на Физическом и Канальном уровнях модели OSI. Большинство таких адаптеров совместимы со спецификациями Network Interface Specification, NDIS (компания Microsoft) и Open Datalink Interface, ODI (компания Novell). Как вы уже знаете из главы 5, обе эти спецификации позволяют передавать по сети несколько протоколов и служат для связи компьютера и его операционной системы с WNIC-адаптером.

Тонка доступа (access point) представляет собой некоторое устройство, подключенное к кабельной сети и обеспечивающее беспроводную передачу данных между WNIC-адаптерами и этой сетью. Как говорилось в главе 4, точка доступа обычно является мостом. Она может иметь один или несколько сетевых интерфейсов перечисленных ниже типов, позволяющих подключить ее к кабельной сети:

· 100BaseTX, 100BaseT, 100BaseT2 и 100BaseT4;

Совет

В настоящее время некоторые поставщики беспроводных сетей предлагают точки доступа с возможностями маршрутизаторов.

Антенна – это устройство, посылающее (излучающее) и принимающее радиоволны. И WNIC-адаптеры, и точки доступа оборудованы антеннами. Большинство антенн беспроводных сетей являются или направленными, или всенаправленными.

Совет

При покупке устройств стандарта 802.11 посмотрите, сертифицированы ли они союзом Wireless Ethernet Compatibility Alliance (WECA), в который входят свыше 150 компаний, выпускающих беспроводные устройства. Более подробную ин формацию об этом союзе можно получить на веб-сайте www . wi - fi . com .

Направленная антенна

Направленная антенна посылает радиолучи в одном главном направлении обычно может усиливать излучаемый сигнал в большей степени, чем всенаправленная антенна. Величина усиления излученного сигнала называется коэффициентом усиления (gain). В беспроводных сетях направленные антенна обычно применяются для передачи радиоволн между антеннами, располагающимися на двух зданиях и подключенными к точкам доступа (рис. 9.2) такой конфигурации направленная антенна обеспечивает передачу на больших расстояниях по сравнению с всенаправленной антенной, поскольку она, вероятнее всего, излучает более сильный сигнал (с большим коэффициентом усиления) в одном направлении. Рассматривая рис. 9.2, обратите внимание на то, что на самом деле антенна излучает сигнал не только в одном правлении, т. к. часть сигнала рассеивается по сторонам.

Примечание

Для знакомства с компонентами беспроводных сетей выполните практическое задание 9-3. Кроме того, в практических заданиях 9-4 и 9-5 рассказывается о том, как установить WNIC-адаптер в системах Windows 2000 и Windows ХP Professional. В практическом задании 9-6 вы узнаете о том, как установить там кой адаптер в системе Red Hat Linux 7. x .

Всенаправленная антенна

Всенаправленная антенна излучает радиоволны во всех направлениях. Поскольку сигнал рассеивается больше, чем при использовании направленной антенны, он, по всей видимости, будет иметь и меньший коэффициент усиления. В беспроводных сетях всенаправленные антенны часто применяются в комнатных сетях, в которых пользователи постоянно перемешаются и сигналы нужно передавать и принимать во всех направлениях. Кроме того, в таких сетях, как правило, не нужно, чтобы коэффициент усиления сигнала был таким же высоким, как в наружной сети, поскольку расстояния между беспроводными устройствами в помещении намного меньше. На рис. 9.3 показана беспроводная сеть, использующая всенаправленные антенны

Рис. 9.3. Всенаправленные антенны

WNIC-адаптер для портативных устройств (например, портативных, карманных и планшетных компьютеров) может снабжаться небольшой схемной всенаправленной антенной. Точка доступа для локальной комнатной сети может иметь съемную всенаправленную антенну или же антенну, подключаемую к точке доступа с помощью кабеля. Точка доступа для наружной сети, соединяющей два здания, обычно имеет антенну с высоким коэффициентом усиления, которая подключается к точке доступа по кабелю.

Методы доступа в беспроводных сетях

Стандарт 802.11 предусматривает два метода доступа: доступ в порядке приоритетов и множественный доступ с контролем несущей и предотвращен ем конфликтов. Оба этих метода работают на Канальном уровне.

При использовании доступа в порядке приоритетов (priority-based access точка доступа также выполняет функции точечного координатора, который задает период без возникновения конфликтов, в течение которого станций) (помимо самого координатора) не могут работать на передачу, не обратившись сначала к координатору. В течение этого периода координатор поочередно опрашивает станции. Если некоторая станция посылает короткий пакет, указывающий на то, что ее нужно опросить, поскольку у нее имеет сообщение на передачу, точечный координатор помещает эту станцию свой опросный лист . Если некоторая станция не опрашивается, координатор посылает ей сигнальный фрейм, указывающий на то, сколько нужно ждать до начала следующего периода без возникновения конфликтов. этого станции, входящие в опросный лист, поочередно получают право осуществление коммуникаций. Когда все эти станции получили возможность передать данные, сразу же задается следующий период без возникновения конфликтов, в течение которого координатор снова опрашивает укажет станцию, определяя необходимость включения в опросный лист станции ждущих возможности передачи.

Доступ в порядке приоритетов предназначается для коммуникаций, требующих малых задержек пересылки информации. К таким типам коммуникаций обычно относится передача речи и видеоизображений, а также организация видеоконференций – т. е. такие приложения, которые лучше всего работают в непрерывном режиме. Согласно стандарту 802.11 доступ в рядке приоритетов также называется функцией точечной координации

Чаще в беспроводных сетях применяется множественный доступ с контро лем несущей и предотвращением конфликтов (Carrier Sense Multiple Аccess with Collision Avoidance, CSMA/CA), который также называется функции распределенной координации (distributed coordination function). В этом случае станция, ожидающая возможности передачи, прослушивает частоту коммуникаций и определяет ее занятость, проверяя уровень индикатора мощности сигнала в приемнике (Receiver Signal Strength Indicator, RSSI). В 14 момент, когда передающая частота свободна, наиболее вероятно конфликтов между двумя станциями, которые одновременно захотят начать передачу. Как только передающая частота освобождаете! каждая станция ждет несколько секунд (число которых определяется параметром DIPS), чтобы убедиться в том, что частота остается незанятой. DIFS – это аббревиатура от термина Distributed coordination function"s In-tra-Frame Space (интервал между фреймами функции распределенной координации), который определяет заранее установленное время обязательного ожидания (задержки).

Если станции ожидают в течение времени, определенного интервалом DIFS, вероятность возникновения конфликта между станциями уменьшается, поскольку для каждой станции, требующей передачи, вычисляется разное значение времени задержки (отсрочки), по истечении которого станция снова будет проверять занятость передающей частоты. Если частота остается незанятой, то передачу начинает станция, имеющая минимальное время отсрочки. Если частота оказывается занятой, то станция, требующая передачи, ждет пока частота не освободится, после чего простаивает еще в течение уже вычисленного времени отсрочки.

При определении времени отсрочки длительность заранее заданного интервала времени умножается на случайное число. Временной интервал – это некоторое значение, хранящееся в базе управляющей информации (MIB), имеющейся на каждой станции. Значение случайного числа лежит в диапазоне от нуля до величины максимального размера окна конфликтов, который также хранится в базе управляющей информации станции. Таким образом, для каждой станции, ожидающей передачи, определяется уникальное время отсрочки, что позволяет станциям избегать конфликтов.

Обработка ошибок передачи данных

Коммуникации в беспроводных сетях зависят от погодных условий, солнечных бликов, других беспроводных коммуникаций, естественных препятствий и других источников помех. Все эти помехи могут нарушить успешный прием данных. Стандартом 802.11 предусмотрен автоматический запрос на повторение (automatic repeat-request, ARQ), который позволяет учитывать возможность появления ошибок передачи.

Если при использовании ARQ-запросов станция, отправившая пакет, не получает подтверждения (АСК) от целевой станции, то она автоматически повторяет передачу пакета. Количество повторов, сделанных передающей станцией до того момента, как она определит невозможность доставки пакета, зависит от размера пакета. Каждая станция хранит две величины: максимальный размер короткого пакета и размер длинного пакета. Кроме этого, имеются два дополнительных параметра: количество повторов для отправки Короткого пакета и количество повторов для длинного пакета. Анализ всех этих значений позволяет станции принять решение о прекращении повторных передач некоторого пакета.

В качестве примера обработки ошибок с использованием ARQ-запросов рассмотрим станцию, для которой короткий пакет имеет максимальную длину 776 байт, а количество повторов для короткого пакета равно 10. Допустим, что станция передает пакет длиной 608 байт, но не получает подтверждения от принимающей станции. В этом случае передающая станция будет 10 раз передавать этот пакет повторно при отсутствии подтверждения. После 10 неудачных попыток (т. е. не получив подтверждения) станция прекратит передавать этот пакет.

Скорости передачи

Скорости передачи и соответствующие частоты сетей 802.11 определяются двумя стандартами: 802.11а и 802.1111b. Коммуникационные скорости, указанные в этих стандартах, относятся к Физическому уровню модели OSI.

Для беспроводных сетей, работающих в диапазоне 5 ГГц, стандарт 802.11 предусматривает следующие скорости передачи данных:

· 6 Мбит/с;

· 24 Мбит/с;

· 9 Мбит/с;

· 36 Мбит/с; "

· 12 Мбит/с;

· 48 Мбит/с;

· 18Мбит/с;

· 54 Мбит/с.

Примечание

Все устройства, отвечающие стандарту 802.11а, должны поддерживать скорости 6, 12 и 24 Мбит/с. Стандарт 802. Па реализуется на Физическом уровне модели OSI и для передачи информационных сигналов с использованием радиоволн предусматривает применение ортогонального мультиплексирования каналов, разделенных частоте (Orthogonal Frequency Division Multiplexing, OFDM). При работе данному методу мультиплексирования 5-гигагерцовый диапазон частот делится на 52 субнесущие (52 подканала). Данные разбиваются между этими субнесущими и передаются одновременно по всем 52 субнесущим. Такие передачи называются параллельными. Четыре субнесущих используются для управления коммуникациями, а 48 передают данные. Стандарт 802.11b используется в диапазоне частот 2,4 ГГц, им предусмотрены следующие коммуникационные скорости: "

· 1 Мбит/с;

· 10Мбит/с;

· 2 Мбит/с;

· 11Мбит/с.

Примечание

На момент написания книги ожидалось утверждение расширения стандарта 802.11Ь, получившее название 802.11 д. Стандарт 802.11д позволяет передавать данные в диапазоне 2,4 ГГц со скоростями до 54 Мбит/с.

В стандарте 802.11b используется модуляция с прямой последовательностью и расширенным спектром (Direct sequence spread spectrum modulation, DSSS), которая представляет собой способ передачи информационных сигналов с применением радиоволн и относится к Физическому уровню. При DSSS-модуляции данные распределяются между несколькими каналами (общим числом до 14), каждый из которых занимает полосу 22 МГц. Точное число каналов и их частоты зависят от страны, в которой осуществляются коммуникации. В Канаде и США используются 11 каналов в диапазоне 2,4 ГГц. В Европе число каналов равно 13, за исключением Франции, где задействуются только 4 канала. Информационный сигнал передается поочередно в каналы и усиливается до значений, достаточных для превышения уровня помех.

На момент написания книги стандарт 802.11а предлагал большие скорости, чем стандарт 802.11b. Однако увеличение скорости достигается за счет уменьшения рабочих расстояний. В настоящее время устройства стандарта 802.11а могут передавать данные на расстояние до 18 м, в то время как устройства стандарта 802.11b работоспособны на расстояниях до 90 м. Это означает, что если вы используете устройства 802.На, то для увеличения общей рабочей зоны взаимодействующих устройств вам нужно будет приобрести больше точек доступа.

Помимо скорости, преимуществом стандарта 802. Па является то, что полный интервал имеющихся для него частот диапазона 0,825 ГГц почти в два раза превышает интервал частот диапазона 0,4835 ГГц для стандарта 802.11b. Это означает, что в процессе вещания можно передать намного больше данных, поскольку чем шире интервал частот, тем больше информационных каналов, по которым передаются двоичные данные.

Для приложений, требующих большей полосы пропускания (например, для передачи речи и видеоизображений) планируйте использование устройств стандарта 802. Па. Кроме того, рассматривайте возможность применения таких устройств в тех ситуациях, когда в пределах небольшой зоны (например, в компьютерной лаборатории) имеется большое количество пользователей. Более высокая полоса пропускания позволит всем клиентам сети работать лучше и быстрее.

Область применения устройств стандарта 802.11b охватывает те конфигурации, когда наличие высокой полосы пропускания не столь важно (например, для коммуникаций, предназначенных преимущественно для передач данных). Кроме того, стандарт 802.11b хорошо подходит для малобюджетных проектов, поскольку для него нужно меньше точек доступа, чем при использовании стандарта 802.11а. Это объясняется тем, что стандарт 802.11а обеспечивает более широкую рабочую зону (до 90 м против 18 м, допускаемых стандартом 802.11а). В настоящее время стандарт 802.11b используется чаще, чем 802.11а, поскольку сети на его основе дешевле в реализации, а на рынке более широко представлена номенклатура предназначенных для нее устройств (выпуск которых, к тому же, был начат раньше). Характеристик стандартов 802.11а и 802.11b представлены в табл. 9.1.

Таблица 9.1. Характеристики стандартов 802.11а и 802.11 b

802.11 а

802.11Ь

Рабочая частота

Рабочие скорости (полоса пропус кания)

6, 9, 12, 18, 24, 36, 48, 54 Мбит/с

1, 2, 10, 11 Мбит/с

Метод коммуни каций

Ортогональное мультиплексирование деления частоты (Orthogonal Frequency Division spread spectrum Multiplexing, OFDM)

Модуляция с прямой последовательностью и расширенным спектром (Direct sequence modulation DSSS)

Максимальное рабочее расстояние в настоящее время

Стоимость реали зации

Относительно высокая из-за необходимости в дополнительных точках доступа

Относительно низкая из-за использования небольшого количества точек доступа

Методы обеспечения безопасности,

Безопасность так же важна в беспроводных сетях, как и в кабельных. Стандарт 802.11 предусматривает два механизма обеспечения безопасности: аутентификацию открытых систем и аутентификацию с общим ключом. При использовании аутентификации открытых систем (open system authentication) любые две станции могут аутентифицировать друг друга. Передающая станция попросту посылает целевой станции или точке доступа запрос: на аутентификацию. Если целевая станция подтверждает запрос, это означает завершение аутентификации. Такой метод аутентификации не обеспечивает достаточной безопасности, и вы должны знать, что в устройствах, выпускаемых многими производителями, он используется по умолчанию.

Гораздо лучшую защиту обеспечивает аутентификация с общим ключом (shared key authentication), поскольку в ней реализуется Wired Equivalent Pri vacy (WEP ). При использовании этого механизма защиты две станции (например, WNIC-адаптер и точка доступа) работают с одним и тем же ключом шифрования, генерируемым WEP-службами. Ключ шифрования WEP представляет собой некий 40- или 104-битный ключ с добавлением контрольной суммы и инициирующей информации, что в результате определяет общую длину ключа, равную 64 или 104 разрядам.

При использовании аутентификации с общим ключом и WEP одна станция обращается к другой с запросом на аутентификацию. Вторая станция отсылает обратно некоторый специальный текстовый запрос. Первая станция шифрует его с помощью ключа шифрования WEP и посылает зашифрованный текст второй станции, которая расшифровывает его, используя тот же самый WEP-ключ, и сравнивает полученный текст с посланным изначально текстовым запросом. Если оба текста совпадают, вторая станция аутентифицирует первую и коммуникации продолжаются.

Использование аутентификации при разрыве соединения

Еще одной функцией аутентификации является разрыв соединения после того, как заканчивается сеанс коммуникаций. Процесс аутентификации при разрыве соединения важен потому, что две взаимодействующие станции не могут быть случайно разъединены другой, не аутентифицированной, станцией. Соединение между двумя станциями разрывается, если одна из них посылает извещение об отказе в аутентификации. В этом случае коммуникации мгновенно прекращаются.

Топологии сетей IEEE 802.11

Стандартом 802.11 предусмотрены две основные топологии. Самой простой является топология с набором независимых базовых служб (Independent Basic Service Set (IBSS) topology), образуемая двумя или несколькими станциями беспроводной связи, которые могут взаимодействовать друг с другом. Сеть такого типа в некоторой степени непредсказуема, поскольку новые станции часто появляются неожиданно. IBSS-топология образуется произвольными одноранговыми (равноправными) коммуникациями между WNIC-адаптера ми отдельных компьютеров (рис. 9.4).

По сравнению с IBSS-топологией, топология с расширенным набором (Extended service set (ESS) topology) имеет большую область обслуживание т. к. в ней имеется одна или несколько точек доступа. На базе ESS-топологии можно создать небольшую, среднюю или большую сеть и значительна! расширить зону беспроводных коммуникаций. ESS-топология показана рис. 9.5.

Если вы используете устройства, совместимые со стандартом 802.11, сеть и IBSS-топологией несложно преобразовать в сеть на основе ESS-топологии. Однако не следует сети с разными топологиями располагать поблизости, т. к. одноранговые IBSS-коммуникации ведут себя нестабильно в присутстствии точек доступа, используемых в ESS-сети. Также могут нарушиться коммуникации и в ESS-сети. "

Совет

Дополнительную информацию о стандарте IEEE 802.11 можно получить на веб-сайте IEEE по адресу www. ieee. org. На этом сайте можно заказать полную копию этого стандарта.

Многоячеечные беспроводные локальные сети

Когда в сети на основе ESS-топологии используются две или несколько точек доступа, такая сеть превращается в многоячеечную беспроводную локаль ную сеть (multiple-cell wireless LAN). Широковещательная область вокруг некоторой точки в такой топологии называется ячейкой (cell). Если, к примеру, комнатная сеть внутри здания имеет пять точек доступа, то в этой сети пять ячеек. Кроме того, если все пять ячеек сконфигурированы одинаково (имеют одну рабочую частоту, одинаковую скорость передачи и общие параметры безопасности), то персональный компьютер или ручное устройство, оборудованное WNIC-адаптером, можно перемещать от одной ячейки к другой. Этот процесс называется роумингом (roaming).

В качестве примера роуминга в беспроводной ESS-топологии рассмотрим университетский факультет, в котором развернута беспроводная сеть, имеющая пять точек доступа, связанных с ячейками с номерами от I до V.1 Ячейка I может принадлежать библиотеке. Ячейки II и III могут охватывать зону преподавательских офисов. Ячейка IV может находиться в офисе администрации, а ячейка V может располагаться в учебной лаборатории. Если все ячейки сконфигурированы одинаково, любой студент, преподаватели или служащий офиса может перемещать портативный компьютер, оборудованный WNIC-адаптером, от одной ячейки к другой, сохраняя при этом доступ к сети факультета. Хотя стандартом 802.11 и не предусмотрена спецификация для протокола роуминга, производители беспроводных устройств разработали один подобный протокол, названный Inter - Access Point Protocol (IAPP ), который в основных моментах отвечает этому стандарту. Протокол IAPP позволяет мобильной станции перемещаться между ячейками, не теряя соединения сетью. Для обеспечения коммуникаций с роумингом IAPP инкапсулируем протоколы UDP и IP.

Примечание

Как вы уже знаете из главы 6, User Datagram Protocol (UDP) представляет coбой протокол без установления соединений, который может использоваться сочетании с протоколом IP вместо TCP, являющегося протоколом с установлением соединений.

Протокол IAPP позволяет оповестить имеющиеся точки доступа о подключении к сети нового устройства, а также позволяет смежным точкам доступе обмениваться между собой конфигурационной информацией. Кроме того протокол предоставляет некоторой точке доступа, обменивающейся данными с мобильной станцией, возможность автоматической передачи сведении об исходном подключении (включая любые данные, ожидающие отправки другой точке доступа в тех случаях, когда мобильная станция перемещается от ячейки, обслуживаемой первой точкой доступа, к ячейке, связанной си второй точкой доступа.

Альтернативные технологии радиосетей

К числу самых распространенных коммуникационных технологий с использованием радиоволн относятся следующие технологии, альтернативные стандарту IEEE 802.11:

· HomeRF Shared Wireless Access Protocol (SWAP).

Каждая перечисленная технология представляет собой спецификацию беспроводных сетей и поддерживается определенными производителями. Все эти технологии рассматриваются в следующих разделах.

Bluetooth

Bluetooth это технология беспроводной связи, описанная особой группой Bluetooth Special Interest Group. Данная технология привлекла внимание таких производителей, как 3Com, Agere, IBM, Intel, Lucent, Microsoft, Motorola, Nokia и Toshiba. В ней используется перестройка частоты в диапазоне 2,4 ГГц (2,4–2,4835 ГГц), выделенном Федеральной комиссией связи для нелицензируемых ISM-коммуникаций2. Метод перестройки частоты предполагает изменение несущей частоты (выбирается одна из 79 частот) для каждого передаваемого пакета. Достоинством этого метода является уменьшение вероятности возникновения взаимных помех в случаях одновременной работы нескольких устройств.

При использовании многоваттных коммуникаций технология Bluetooth обеспечивает передачу данных на расстояния до 100 м, однако на практике большинство устройств Bluetooth работают на расстоянии до 9 м. Обычно используются асинхронные коммуникации со скоростью 57,6 или 721 Кбит/с. Устройства Bluetooth, обеспечивающие синхронные коммуникации, работают со скоростью 432,6 Кбит/с, однако такие устройства менее распространены.

В технологии Bluetooth применяется дуплексная передача с временным разде лением каналов (time division duplexing, TDD), при которой пакеты передаются в противоположных направлениях с использованием временных интервалов. Один цикл передачи может задействовать до пяти различных временных интервалов, благодаря чему пакеты могут передаваться и приниматься одновременно. Этот процесс напоминает дуплексные коммуникации. Одновременно могут взаимодействовать до семи устройств Bluetooth (некоторые производители утверждают, что их технологии обеспечивают подключение восьми устройств, однако это не соответствует спецификациям). Когда устройства обмениваются информацией, одно из них автоматически выбирается ведущим (master). Это устройство определяет функции управления (например, синхронизацию временных интервалов и управление пересылками). Во всех других аспектах коммуникации Bluetooth напоминают одноранговую сеть.

Совет

Узнать больше о технологии Bluetooth можно на официальном веб-сайте по адресу www . bluetooth . com . Выполните практическое задание 9-7, в котором вы познакомитесь с веб-сайтом Bluetooth, где описаны области применения Blue-tooth для беспроводных коммуникаций с универсальным доступом.

HiperLAN

Технология HiperLAN была разработана в Европе, и в настоящее время существует ее вторая версия, названная HiperLAN2. Эта технология использует диапазон 5 ГГц и обеспечивает скорости передачи данных до 54 Мбит/с. Помимо скорости, достоинством HiperLAN2 является совместимость с коммуникациями Ethernet и ATM.

Технология HiperLAN2 поддерживает Data Encryption Standard (DES ) – стандарт шифрования данных, разработанный институтами National Institute on Standards and Technology (NIST) (Национальный институт стандартов и технологий) и ANSI. В нем используется открытый (public) ключ шифрования, доступный для просмотра всеми сетевыми станциями, а также частный. (private) ключ, выделяемый только передающим и принимающим станциям. Для дешифрации данных необходимы оба ключа.

Технология HiperLAN2 обеспечивает качество обслуживания (QoS), предоставляя гарантированный уровень коммуникаций для различных классов обслуживания (например, для передачи речи или видеоизображений). Это возможно благодаря тому, что точки доступа централизованно управляют беспроводными! коммуникациями, и планируют все сеансы передачи информации.

Сеть HiperLAN2 работает в двух режимах. Непосредственный режим (directlmode) представляет собой топологию одноранговой сети (подобную 1В58 топологии в сетях 802.11), которая образуется только взаимодействующим станциями. Другой режим называется централизованным (centralized mode) поскольку он реализуется в больших сетях, где имеются точки доступа, концентрирующие сетевой трафик и управляющие им. Методом коммуникаций для обоих режимов служит дуплексная передача с временным разделением каналов (TDD) – та же технология, которая применяется в Bluetooth.

Совет

Для более близкого знакомства с HiperLAN2 посетите веб-сайт www . hiperian 2. com .

HomeRF Shared Wireless Access Protocol (SWAP) (Протокол совместного беспроводного доступа HomeRF) – это технология, поддерживаемая такими компаниями, как Motorola, National Semiconductor, Proxim и Siemens. Эта

технология работает в диапазоне 2,4 ГГц и обеспечивает скорость в сети до 10 Мбит/с. В качестве метода доступа она использует CSMA/CA (как и стандарт 802.11) и предназначена для домашних сетей, где передаются данные, речь, видеоизображения, мультимедийные потоки и другая информация.

Примером типичного использования технологии HomeRF SWAP является беспроводная сеть, объединяющая несколько персональных компьютеров и обеспечивающая им доступ в Интернет. Другой областью применения является реализация беспроводных соединений для центров развлечений (например, для связи друг с другом нескольких телевизоров и стереосистем). Сеть HomeRF SWAP может связать между собой несколько телефонов. Также с ее помощью можно обеспечить связь между устройствами управления домом (освещением, кондиционерами, кухонными агрегатами и т. д.). Для обеспечения безопасности в сетях HomeRF SWAP используется 128-битное шифрование данных и 24-разрядные сетевые идентификаторы.

На момент написания книги в процессе разработки находилась технология HomeRF SWAPS, обеспечивающая коммуникации со скоростью 25 Мбит/с. Создатели этой технологии стремятся к тому, чтобы встроить ее в телевизоры и мультимедийные серверы с целью расширения возможностей сложных видеосистем.

(Совет)

Более детально познакомиться с HomeRF SWAP можно на сайте www . homerf . org .

Сетевые технологии с использованием инфракрасного излучения

Инфракрасное (И К) излучение (infrared) можно использовать в качестве передающей среды для сетевых коммуникаций. Вы хорошо знакомы с этой технологией, благодаря пультам дистанционного управления для телевизоров и стереосистем. ИК-излучение представляет собой электромагнитный сигнал, подобно радиоволнам, однако его частота ближе к диапазону видимых электромагнитных волн, называемых видимым светом.

ИК-излучение может распространяться либо в одну сторону, либо во всех направлениях, при этом светодиод (LED) используется для передачи, а фотодиод – для приема. ИК-излучение относится к Физическому уровню, его частота составляет 100 ГГц – 1000 ТГц (терагерц), а длина электромагнитной волны лежит в диапазоне от 700 до 1000 нанометров (нм, 10~9).

Подобно радиоволнам, ИК-излучение может оказаться недорогим решением в случае невозможности прокладки кабеля или при наличии мобильных пользователей. Его преимущество заключается в том, что ПК-сигнал сложно перехватить незаметно. Другим достоинством является устойчивость ИКЦ сигнала к радио - и электромагнитным помехам. Однако эта коммуникационная среда имеет и ряд существенных недостатков. Во-первых, при направленных коммуникациях скорость передачи данных не превышает 16 Мбит/с, а при всенаправленных коммуникациях эта значение меньше, чем 1 Мбит/с. Во-вторых, ИК-излучение не проходив сквозь стены, в чем несложно убедиться, попробовав управлять телевизором с пульта дистанционного управления из другой комнаты. С другой стороны этот недостаток оборачивается достоинством, т. к. из-за ограниченности области распространения коммуникации с использованием ИК-сигналов делаются более безопасными. В-третьих, инфракрасная связь может подвергаться помехам со стороны сильных .

Совет

В инфракрасных технологиях могут использоваться точки доступа, позволяющие расширять рабочую область и создавать крупные сети.

При передаче информации с помощью рассеянного инфракрасного излучения (diffused infrared) посланный ИК-сигнал отражается от потолка, как показано на рис. 9.6. Для таких коммуникаций существует стандарт IEEE 802. предусматривающий работу на расстоянии от 9 до 18 м в зависимости высоты потолка (чем выше потолок, тем меньше область охвата сети). Для рассеянного ИК-излучения этим стандартом определены скорости передачи данных, равные 1 и 2 Мбит/с. Длины волн рассеянного ИК-сигнала, ИСЩ пользуемого в стандарте 802.11R, лежат в диапазоне 850–950 нм (из всех диапазона ИК-лучей, составляющего 700–1000 нм). Для сравнения, видимый свет имеет диапазон длин волн, приблизительно равный 400–700 Мегагерц. Максимальная оптическая излучаемая мощность сигнала согласно стандарт 802.11R составляет 2 Вт.

Совет

Хотя рассеянные ИК-сигналы не подвержены радио - и электромагнитным помехам, окна в зданиях могут создавать помехи, поскольку эти сигналы чувствительны к сильным источникам света. Учтите наличие окон при проектирования беспроводной сети с использованием рассеянного ИК-излучения.

Метод передачи сигналов, использованный стандартом IEEE 802.11R, называется фазоимпульсной модуляцией (Pulse position modulation, PPM). Согласно этому методу, двоичное значение сигнала связывается с расположением импульса в наборе возможных положений в спектре электромагнитного излучения. Для коммуникаций со скоростью 1 Мбит/с стандарт 802.11R предусматривает шестнадцать возможных положений импульса (16-РРМ), этом каждое положение представляет четыре двоичных разряда. При коммуникациях со скоростью 2 Мбит/с каждый импульс представляет два разряда, и возможных положений импульса всего четыре (4-РРМ). Импульс в определенной позиции указывает на то, что некоторое значение присутствует, а отсутствие импульса означает, что значения нет. РРМ – это метод символьного кодирования, напоминающий двоичное кодирование в том смысле, что в нем используются только нули и единицы.

Микроволновые сетевые технологии

Микроволновые системы работают в двух режимах. Наземные сверхвысокочастотные (СВЧ) каналы (terrestrial microwave) передают сигналы между двумя направленными параболическими антеннами, которые имеют форму тарелки (рис. 9.7). Такие коммуникации осуществляются в диапазонах частот 4–6 ГГц и 21–23 ГГц и требуют, чтобы оператор связи получал лицензию от Федеральной комиссии связи (FCC).

Спутниковые микроволновые системы передают сигнал между тремя антеннами, одна из которых располагается на спутнике Земли (рис. 9.8). Спутники в таких системах находятся на геосинхронных орбитах на высоте 35000 км над Землей. Чтобы некоторая организация могла использовать такую технологию связи, она должна либо запустить спутник, либо арендовать канал у компании, предоставляющей подобные услуги. Из-за больших расстояний задержки: при передаче составляют от 0,5 до 5 секунд. Коммуникации ведутся в диапазоне частот 11–14 ГГц, которые требуют лицензирования.



Как и другие среды беспроводной связи, микроволновые технологий используются тогда, когда кабельные системы стоят слишком дорого или если прокладка кабеля невозможна. Наземные СВЧ-каналы могут оказаться хорошим решением при прокладке коммуникаций между двумя большими зданиями в городе. Спутниковые системы связи являются единственно возможным способом объединения сетей, находящихся в разных странах или на разных континентах, однако это решение очень дорогое.

Микроволновые коммуникации имеют теоретическую полосу пропускания до 720 Мбит/с и выше, однако на практике в настоящее время скорости обычно лежат в диапазоне 1–10 Мбит/с. Микроволновые системы связи имеют некоторые ограничения. Они дороги и сложны в развертывании и эксплуатации. Качество микроволновых коммуникаций может ухудшаться из-за условий атмосферы, дождя, снега, тумана и радиопомех. Более того, микроволновый сигнал может быть перехвачен, поэтому при использовании данной передающей среды особо важное значение имеют средства аутентификации и шифрования.

Беспроводные сети на базе низкоорбитальных спутников Земли

Орбиты спутников связи находятся на расстоянии примерно 30000 км над Землей. Из-за большого удаления этих спутников и возмущений в верхних слоях атмосферы могут возникать задержки в передаче сигнала, которые недопустимы для коммуникаций с высокими требованиями к этому параметру связи (в т. ч. для передачи двоичных данных и мультимедиа).

В настоящее время несколько компаний разрабатывают низкоорбитальные спутники (Low Earth Orbiting (LEO) satellite), орбиты которых должны находиться на расстоянии от 700 до 1600 км от поверхности Земли, что должно ускорить двустороннюю передачу сигналов. Из-за своей более низкой орбиты LEO-спутники охватывают меньшие территории, и, следовательно, для того чтобы полностью покрыть поверхность планеты, необходимо около тридцати LEO-спутников. В настоящее время компании Teledesic, Motorola и Boeing разрабатывают сеть таких спутников, с помощью которых Интернет и другие услуги глобальных сетей станут доступными в любой точке Земли. Пользователи взаимодействуют с LEO-спутниками при помощи специальных антенн и аппаратуры декодирования сигналов. Начиная с 2005 года, LEO-спутники можно будет использовать в следующих областях:

· широковещательные интернет-коммуникации; проведение всепланетных видеоконференций;

· дистанционное обучение;

· другие коммуникации (передача речи, видео и данных).

Ожидается, что скорости коммуникаций на базе LEO-спутников составят от 128 Кбит/с до 100 Мбит/с для восходящих потоков (к спутнику) и до

720 Мбит/с для нисходящих потоков (от спутника). LEO-спутники используют ультравысокие частоты, утвержденные Федеральной комиссией связи в США и аналогичными организациями в разных частях света. Электромагнитный спектр коммуникаций с использованием LEO-спутников также одобрен союзом ITU. Рабочие частоты лежат в диапазоне 28,6–29,1 ГГц дли восходящих каналов и 18,8–19,3 ГГц для. нисходящих каналов. Когда эта сеть войдет в эксплуатацию (архитектура сети представлена на рис. 9.9), руководитель проекта, например, из Бостона сможет проводить видеоконференции или обмениваться важными двоичными файлами с исследователем живущим в горной хижине в Вайоминге, а хозяин животноводческой фермы из Аргентины сможет обращаться за сельскохозяйственными данными сети Университета Северной Каролины (Колорадо). (Выполните практическое задание 9-8 для того, чтобы получить дополнительную информацию он использовании LEO-спутников для построения сетей.)

Резюме

1 В современных технологиях беспроводных сетей применяются радиоволны, инфракрасное излучение, СВЧ-волны и низкоорбитальные спутники.

2 Основой для беспроводных сетей послужили эксперименты с пакетной радиосвязью, которые давно проводили операторы-радиолюбители.

3 В настоящее время беспроводные сети используются во многих областях (например, когда сложно развернуть кабельные сети). Кроме того, такие сети позволяют уменьшить затраты на установку сети и обеспечивают связь с мобильными компьютерами.

4 В технологиях радиосвязи обычно используются коммуникации в пределах прямой видимости, которые осуществляются от одной точки к другой вдоль поверхности Земли (вместо того, чтобы радиосигнал отражался от атмосферы Земли). В таких технологиях также применяются коммуникации с расширенным спектром, когда радиоволны передаются по нескольким смежным частотам.

5 Стандарт IEEE 802.11 в настоящее время используется в радиосетях различного типа. Этот стандарт предусматривает три основных компонента: адаптер беспроводной сети (WNIC), точка доступа и антенна. Приняты два стандарта (802.11а и 802.11b), которые определяют скорости коммуникаций, отвечающих стандарту 802.11. Внедряется новый стандарт – 802.11g, который представляет собой расширение стандарта 802.11b.

6 К распространенным альтернативам стандарту 802.11 относятся технологии Bluetooth, HiperLAN и HomeFR Shared Wireless Access Protocol.

7 Стандарт 802.11R предусматривает использование рассеянного инфракрасного (ИК) излучения для построения небольших, относительно защищенных сетей, размещающихся в довольно замкнутых офисах или рабочих зонах.

8 Микроволновые сети существуют в двух видах: сети на базе наземных СВЧ-каналов и спутниковые сети. Спутниковые сети, конечно, могут стоить очень дорого из-за высоких расходов на запуск спутника в космос.

9 Сети на базе низкоорбитальных (LEO) спутников предусматривают использование группы спутников, располагающихся на очень низких орбитах над уровнем Земли, благодаря чему задержки при передаче сигналов получаются значительно меньше, чем в обычных спутниковых коммуникациях. Когда сети на базе LEO-спутников будут развернуты, возможность работы в сетях станет доступной в любой точке планеты.

10 В табл. 9.2 перечислены достоинства и недостатки сетевых коммуникаций с использованием радиоволн, ИК-излучения и СВЧ-волн.

Таблица 9.2. Достоинства и недостатки беспроводных технологий связи

Радиоволны

ИК-излучение

СВЧ-волны

Низкоорби-тальные спутники

Досто-инства

Недорогая алтернатива для тех случаев, когда сложно реализовать коммуникации по кабелю.

Одно из средств реализации мобильных телекоммун-икаций

Обычно не требует лицензирования.

Сигнал трудно перехватить незаметно.

Недорогая альтернатива для тех случаев, когда сложно реализовать коммуникации по кабелю, особенно на большие расстояния.

Наземный СВЧ канал на больших расстояниях может оказаться более дешевым, чем арендуемые телекоммуника-ционные линии

Может разполагаться над Землей при создании глобальной сети.

Не создают таких задержек при передачи сигналов, как геосинхронные спутники.

Недо-статки

Могут не соответствовать требованиям высокоскоростных сетей.

Подвержены помехам со стороны сотовых сетей, военных, обычных и других источников радиосигналов.

Подвержены помехам естественного происхождения.

Могут не подойти для высокоскоро-стных коммуникаций.

Подвержены помехам со стороны посторонних источников света.

Не передаются через стены.

Номенклатура предлагаемых устройств меньше, чем для других типов беспроводных сетей

Могут не подойти для высокоскоро-стных коммуникаций

Дороги в установке и эксплуатации.

Подвержены помехам природного характера (дождь, снег, туман) и радиопомехам, а также зависят от состояния атмосферы.

Будут доступны лишь в 2005 году

Беспроводная передача данных в настоящее время перживает своеобразный бум. Если с речевым обменом все в достаточной степени понятно, он нужен всем, везде и всегда, то в области беспроводной передачи данных ситуация не столь однозначна. Крупнейшие разработчики технологий и производители элементной базы лихорадочно пытаются опредилить тенденции развития рынка, то есть интересы потребителя. Возникают и тихо угасают технологии и связанное с ними производство компонентов. вопросов много больше, чем ответов.

Сети передачи данных могут быть классифицированы следующим образом:

  1. Автономные локальные сети (потоки данных территориально замкнуты в пределах предприятия, офиса, дома, квартиры).
  2. Локальные сети с выходом в транспортную (первичную) сеть (часть потребителей имеет выход за пределы локальной сети, например, в Интернет).
  3. Сети непосредственного доступа потребителей в транспортную сеть.

Подобная упрощенная классификация в данном случае вполне достаточна (см.рис.1).

Современные телекоммуникационные сети строятся и оптимизируются согласно двухуровневой иерархии: магистральные транспортные сети и сети доступа, что гораздо э ономичнее и удобнее для построения открытых систем и доставки интегрированных услуг. При строительстве сети до 90% всей стоимости приходится на ее нижнее звено, то есть на местную сеть, или сеть доступа. Для решения проблемы «последней мили » сегодня предложен целый ряд технологий. «Последняя миля » - это часть телекоммуникационной сети связи общего пользования, расположенная между точкой распределения ресурса первичной сети и абонентским оборудованием. Кроме традиционных проводных технологий для распределения информации используются беспроводные системы абонентского доступа и ряд других технологий. Диапазон телекоммуникационных услуг, предоставляемых сейчас конечным пользователям, достаточно широк: передача данных, доступ в Интернет, телефония, интерактивное видео, связь с подвижными объектами. Каждую из услуг можно подразделить далее в соответствии с предлагаемым уровнем производительности и качества.

Типовая структура системы абонентского доступа, как правило, включает в себя сеть доступа (access network) и сеть распределения (distribution network).

  • абонентский терминал (АТ) - приемно-передающее радиоустройство небольших размеров с внутренней или внешней антенной. Оконечное пользовательское оборудование подключается непосредственно к абонентскому терминалу и через радиоканал имеет доступ к сети связи;
  • точка доступа (ТД) - устройство, обеспечивающее связь абонентов сети доступа с телекоммуникационной (первичной) сетью доступа;
  • точка распределения (ТР) - элемент первичной сети, обеспечивающий организацию сети распределения с точками доступа.

Термин «сеть распределения » подразумевает часть сети между точкой доступа и точкой распределения. Сеть распределения может отсутствовать, если сеть доступа начинается непосредственно от точки распределения ресурса транспортной сети. В точке доступа должна обеспечиваться реализация протоколов сети доступа при взаимодействии с абонентскими терминалами, протоколов сети общего пользования при работе с узлом коммутации, а также взаимное конвертирование этих протоколов и управление потоком данных в системе абонентского доступа. На практике эти функции выполняют маршрутизаторы (в сетях передачи данных), концентраторы и базовые станции (в сотовых сетях и системах беспроводного абонентского доступа) и некоторые другие устройства. Как для сети доступа, так и для сети распределения могут быть использованы различные технологии; можно развертывать и гибридные сети. Допустимы разнообразные конфигурации сетей, которые зависят от требуемой пропускной способности, стоимости планируемой сети, топологии, ограничений, вводимых различными регулирующими организациями и т.д.

Классификация систем беспроводного абонентского доступа (WLL (Wireless Local Loop) или RLL (Radio Local Loop)) также может быть проведена по целому ряду параметров - структуре,используемому диапазону частот, содержанию трафика и т.п.

Общепринятой классификации систем WLL на сегодняшний день не существует, однако возможна некоторая систематизация по основным характеристикам (см.табл.1).

Таблица 1.Систематизация характеристик WLL

Основное назначение систем «точка - точка » в инфраструктуре «последней мили » - это подключение небольших сосредоточенных систем связи (локальной сети, учрежденческой АТС и т.д.) к корпоративным сетям, сетям связи общего пользования или телекоммуникационным узлам. Сотовые системы и системы «точка - многоточка » применяются в тех случаях, когда нужно подсоединить к узлу системы связи разрозненные группы абонентов. Существует широкое многообразие WLL-систем этих двух типов, что вынуждает классифицировать системы с сотовой структурой и структурой «точка - многоточка » по характеру их трафика. Можно выделить три основных класса таких систем:

  • системы абонентского доступа к сетям передачи данных;
  • системы для подключения абонентов к телефонной сети общего пользования;
  • системы интегрального типа.

В свою очередь, системы абонентского доступа к сетям передачи данных можно разделить на следующие подклассы:

    а) системы, ориентированные на обслуживание абонентов с небольшой индивидуальной интенсивностью коротких транзакций (системы мониторинга различного назначения, платежные системы безналичного расчета и др.);
    б) системы, ориентированные на обеспечение доступа к сетевым информационным ресурсам (Интернет, услуги ISDN, удаленный доступ к локальным компьютерным сетям и др.).

Радиосистемы для подключения абонентов к телефонной сети общего пользования (ТФ-ОП) иногда еще называют «телефонными радиоудлинителями ». Часто беспроводные «телефонные удлинители » предоставляют также услуги передачи данных и факсимильных сообщений.

Системы интегрального типа совмещают в себе системы первых двух типов и являются более универсальными. Кроме обеспечения телефонной связи, системы интегрального типа могут обслуживать абонентов, передающих данные и видеоинформацию. Причем абоненты, передающие данные, могут работать в широком диапазоне скоростей передачи - от 1200 бит//с до десятков и даже сотен килобит в секунду. Неотъемлемой задачей таких систем является также обеспечение доступа абонентов к услугам цифровых сетей связи с интеграцией служб (ISDN).

Если находиться в рамках катехизиса, то будем последовательно рассматривать возникающие в реальной жизни вопросы, относящиеся к беспроводной передаче данных, а затем давать на них ответы. Достаточно полное рассмотрение данной проблемы потребовало бы специальных исследований, поэтому ограничимся анализом (по-видимому, неполным) материалов зарубежной (в основном американской и европейской) скорее технической, чем научной периодики, а также отечественных журналов соответствующей ориентации, которые очень верно подмечают как новинки, так и тенденции. Не будет забыт и иноязычный Интернет с известными адресами, хотя он имеет ряд специфических особенностей.

Не вдаваясь в подробности, можно отметить, что передача данных, как один из видов связи, обладает самыми высокими требованиями к достоверности передаваемой информации. Передача файлов, например, обычно не терпит ошибок вообще.

Ответ на первый вопрос «кому нужна беспроводная передача данных?» прост - всем в той или иной степени. Одним из достоинств Голливуда (кроме спецэффектов) является тот неоспоримый факт, что он формирует общественное мнение и, с точки зрения информационных технологий, в правильном направлении. «Умный дом » (smart house) требует непрерывного наблюдения за всеми системами жизнеобеспечения, автомобиль требует того же, и так далее. Это не будущее, а реальность.

Обычно коллизия между потребителем и производителем выглядела примерно так: мне нужно это, а с другой стороны звучало - а я могу это. Сейчас картина выглядит с точностью до наоборот (если не считать вечных природных и временных технологических ограничений). Движение со стороны потребителя очевидно - больше и недорого. Но что нужно? Здесь два варианта - работа и быт. Причем оба варианта не чужды друг другу. Итак, следующий вопрос - что нужно для работы? Ответ - нужно все. Где система, там и люди. Посмотрим, что могут предложить нам существующие технологии и компоненты. Для ориентации используем рис.2, на котором изображено примерное позиционирование ряда технологий беспроводной передачи данных в координатах «дальность связи - скорость передачи ».

В верхней части рисунка показаны характерные приложения данных технологий. Здесь последовательно с ростом требуемой скорости передачи размещены:передача речи, неподвижных графических изображений, низкоскоростной доступ в Интернет, беспроводная передача музыкальных произведений, потоковая передача видео, передача цифрового видео, передача многоканального видео. Дальность связи изменяется от единиц метров до единиц километров, скорость передачи данных изменяется от десятков килобит в секунду до десятков мегабит в секунду.

Варианты технологии Bluetooth 1 и Bluetooth 2 отличаются классом мощности (см.более подробно соответствующий пункт). Аббревиатура HL2 означает технологию HiperLAN2, разрабатываемую ETSI (The European Telecommunications Stahdarts Institute - европейский институт стандартизации в области телекоммуникаций). Потребительские свойства технологий HL2 и IEEE802.11a близки. На рисунке не показана технология HomeRF, которая в своем первом варианте со скоростью передачи 1,6 Мбит/с близка к Bluetooth, а в варианте HomeRF 2.0 со скоростью передачи 10 Мбит/с конкурирует с IEEE802.11b.Справа от рисунка приведены соответствующие сокращения сетевых технологий, в которых могут использоваться рассматриваемые технологии. Это: PAN (относительно новое понятие - Personal Area Network), LAN (локальные вычислительные сети), и WAN (распределенные). LMDS (Local Multipoint Distribution Service) означает сеть распределения данных (сейчас применяется в сотовых системах телевидения). В данной позиции может быть размещена и MMDS (Multipoint Multichannel Distribution Service)- многоканальная система распределения данных.

Из рисунка явно следует распределение технологий по различным потребительским нишам и наличие конкурирующих технологий, которые обычно имеют американское и европейское происхождение. Технологии, размещенные рядом друг с другом, также могут быть частично взаимозаменяемыми, то есть они скорее дополняют друг друга, чем конкурируют.

Используемые частотные диапазоны и их регулирование

На рис.2 отсутствует информация об используемых частотных ресурсах. Вообще говоря, для передачи данных могут использоваться как диапазоны частот, требующие государственного разрешения (а вместе с ним и оплаты лицензирования), так и нелицензируемые интервалы частот, относительно свободные для их использования. Обычно это относится к ограничению допустимой плотности электромагнитного поля в дальней зоне, которая определяется мощностью передатчика и параметрами направленности антенн. Сейчас характерным является широкое использование нелицензируемых диапазонов частот. Потенциально это неизбежно приведет (и приводит) к возникновению проблем как внутрисистемной, так и межсистемной ЭМС (электромагнитной совместимости).

К данному типу частотных ресурсов относится ISM (Industrial, Scientific, and Medical Equipment) - диапазон частот, который предназначен для использования в нелицензируемом оборудовании (промышленном, научном, медицинском, домашнем или аналогичном), за исключением приложений в области связи. Оборудование должно генерировать и использовать радиочастотную энергию локально. В США данный диапазон включает в себя ряд интервалов: 915,0 ± 13 МГц; 2450 ±50 МГц; 5,8 ± 0,075 ГГц; 24,125 ± 0,125 ГГц. Европейский вариант имеет некоторые отличия.

Сейчас интервал частот 2450 МГц широко используется для организации систем передачи данных на короткие расстояния (например, беспроводных локальных сетей WLAN). В России разрешено применение на вторичной основе интервала 2400 –2483,5 МГц (вторичность означает невозможность применения при возникновении помех системам, использующим данный диапазон на первичной основе). В настоящее время в соответствии с решением ГКРЧ от 29.04.2002 (протокол №18/3) «О порядке использования на территории Российской Федерации внутриофисных систем передачи данных в полосе частот 2400 –2483,5 МГц » разрешается использование юридическими и физическими лицами полосы частот для организации на территории Российской Федерации внутриофисных систем беспроводной передачи данных на вторичной основе и при условии непредъявления претензий на возможные помехи от РЭС военного и гражданского назначения, а также от высокочастотных установок промышленного, научного, медицинского и бытового применения, использующих указанную полосу частот. При этом следует учитывать, что для этих систем не требуется согласований с радиочастотными органами Министерства обороны Российской Федерации и другими (при необходимости) министерствами и ведомствами России. Для получения разрешения на использование радиочастот для эксплуатации внутриофисных систем передачи данных заявитель направляет в адрес ФГУП «Главный радиочастотный центр » радиочастотную заявку по форме, указанной в приложении 1 решения ГКРЧ от 29.04.2002 (протокол № 18//3). При отсутствии замечаний по заявке ФГУП «Главный радиочастотный центр » готовит проекты разрешительных документов. После оплаты работ по экспертизе заявки заявителю выдается разрешение на использование полосы частот 2400 –2483,5 МГц для эксплуатации РЭС внутриофисных систем. На основании этого документа заявитель получает в соответствующем ФГУП Радиочастотного центра федерального округа разрешение на эксплуатацию РЭС.

Интервал 5,8 ГГц совпадает с частотами, выделенными для систем U-NII (Unlicensed National Information Infrastructure - нелицензируемая Национальная информационная инфраструктура), обеспечивающими быстрое развертывание систем при намного меньших затратах, чем в случае диапазонов, требующих лицензирования. В январе 1997 года Федеральная комиссия по связи (FCC) США выделила для услуг U-NII три диапазона частот суммарной шириной 300 МГц в диапазоне 5 ГГц: диапазон U-NII 1 (5,15 –5,25 ГГц) и диапазон U-NII 2 (5,25 –5,35 ГГц), предназначенные для локальных сетей и других приложений связи на коротких расстояниях, и диапазон U-NII 3 (5,725 –5,825 ГГц) для сетей, требующих большей дальности связи. В России частоты диапазона 5,725 –5,875 ГГц могут использоваться при том условии, что уровень радиопомех от источников излучений не будет превышать допускаемый уровень индустриальных радиопомех.

Более того, FCC заявила о необходимости изменить саму методологию распределения частотных диапазонов. Главная идея - распределять спектр динамически, так как отдельные частотные интервалы используются очень интенсивно,а другие практически свободны. Предполагается также учесть в лицензировании не только сами частоты, но и время их занятия, мощность излучения. Рекомендуется также проработать вопрос более эффективного анализа помех, установить максимальный уровень мощности передачи в зависимости от диапазонов частот и уровня шумов. И наконец,предлагается ввести три вида лицензирования частотных ресурсов: эксклюзивное пользование, общее пользование и контролируемое пользование. На наш взгляд, такой подход вполне адекватен современности.

Краткая характеристика технологий

Приведем краткую характеристику технологий беспроводной передачи данных, а затем осуществим их сравнительный анализ. Традиционно в данной области телекоммуникаций (и не только здесь) конкурируют американские стандарты IEEE, европейские стандарты ETSI и фирменные стандарты.

Технология ZigBee продвигается организацией ZigBee Alliance, ставящей своей целью обеспечение верхних слоев семиуровневой модели стеком протоколов (от сетевого уровня до уровня приложений), включая профили приложений и инженерную реализацию компонентов данной технологии. К разработке соответствующего стандарта низкоскоростной передачи данных подключился комитет IEEE 802.15.4, разрабатывающий уровни MAC (управление доступом к среде передачи - media access control) и PHY (уровень передачи сигналов в физической среде) семиуровневой модели. Именно первый,физический уровень (PHY) в основном определяет стоимость системы, скорости передачи данных, потребляемую мощность, габариты и диапазон используемых частот.

Назначение данной технологии - обеспечить компонентами системы автоматизации и дистанционного управления различного назначения. При этом для АТ была поставлена цель обеспечения их автономным батарейным питанием двумя элементами типа АА в течение времени от полугода до двух лет. Варианты применения устройств, построенных на основе данной технологии: беспроводные системы обеспечения безопасности жилища от несанкционированного проникновения в них; удаленное управление кондиционерами, системой освещения помещений и оконными жалюзи; управление какими-либо устройствами инвалидами, пожилыми людьми и детьми; универсальное управление аудио и видеоустройствами; беспроводные клавиатура, мышь ПК, пульт управления игровой приставкой; беспроводные детекторы задымления и наличия СО; автоматизация и управление элементами промышленных и жилых помещений (освещением и т.п.).

Предусматривается разработка шлюзов для взаимодействия данных систем с другими сетями передачи данных.

Используемые частоты: ISM (2,4 ГГц со скоростью 250 кбит/с), европейский диапазон 868 МГц (20 кбит/с) и американский диапазон 915 МГц (40 кбит/с).

Технология Bluetooth - это технология передачи данных по радио на малые расстояния (до 10 м, с возможностью расширения до 100 м), позволяющая осуществлять связь беспроводных телефонов, компьютеров и различной периферии, не требуя прямой видимости. По мощности радиопередатчика аппаратура делится на три класса: первый (максимальная выходная мощность 100 мВт), второй (2,5 мВт) и третий (1 мВт).

Разработку технологии начала компания Ericsson Mobile Communications. Первоначальной ее целью было получение нового радиоинтерфейса с низким уровнем энергопотребления и невысокой стоимостью, который позволил бы устанавливать связь между сотовыми телефонами и гарнитурами. Кроме того, новый интерфейс предназначался для передачи данных между ПК, между ПК и его периферией, между ноутбуком и сотовым телефоном и т.п.

В феврале 1998 года. Ericsson совместно с Intel, IBM, Toshiba и Nokia сформировали специальную группу по разработке и продвижению технологии под названием Bluetooth SIG (Special Interest Group). Эта технология полностью открыта, а поэтому любая компания, подписавшая лицензионное соглашение, может войти в состав Bluetooth SIG и начать создавать продукты на ее основе.

Семейство стандартов IEEE 802.11х разрабатывается американским институтом IEEE. Стандарт IEEE 802.11, разработка которого была завершена в 1997 г., является базовым стандартом и определяет протоколы, необходимые для организации беспроводных локальных сетей (WLAN). Основные из них - протокол управления доступом к среде MAC (нижний подуровень канального уровня) и протокол PHY передачи сигналов в физической среде. В качестве последней допускается использование радиоволн и инфракрасного излучения. Стандартом 802.11 определен единственный подуровень MAC, взаимодействующий с тремя типами протоколов физического уровня, соответствующих различным технологиям передачи сигналов - по радиоканалам в диапазоне 2,4 ГГц с широкополосной модуляцией с прямым расширением спектра (DSSS) и ППРЧ (FHSS), а также с помощью инфракрасного излучения. Спецификациями стандарта предусмотрены два значения скорости передачи данных - 1 и 2 Мбит//с. По сравнению с проводными ЛВС Ethernet-возможности подуровня MAC расширены за счет включения в него ряда функций, обычно выполняемых протоколами более высокого уровня, в частности, процедур фрагментации и ретрансляции пакетов. Это вызвано стремлением повысить эффективную пропускную способность системы благодаря снижению накладных расходов на повторную передачу пакетов.

В качестве основного метода доступа к среде стандартом 802.11 определен механизм CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance - множественный доступ с обнаружением несущей и предотвращением столкновения пакетов).

Управление питанием. Для экономии энергоресурсов мобильных рабочих станций, используемых в беспроводных ЛВС, стандартом 802.11 предусмотрен механизм переключения станций в так называемый пассивный режим с минимальным потреблением мощности.

Архитектура и компоненты сети . В основу стандарта 802.11 положена сотовая архитектура,причем сеть может состоять как из одной, так и нескольких ячеек. Каждая сота управляется базовой станцией, являющейся ТД, которая вместе с находящимися в пределах радиуса ее действия рабочими станциями пользователей образует базовую зону обслуживания. Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему, представляющую собой эквивалент магистрального сегмента кабельных ЛВС. Вся инфраструктура, включающая точки доступа и распределительную систему, образует расширенную зону обслуживания. Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняются непосредственно рабочими станциями.

Роуминг. Для обеспечения перехода мобильных рабочих станций из зоны действия одной точки доступа к другой в многосотовых системах предусмотрены специальные процедуры сканирования (активного и пассивного прослушивания эфира) и присоединения (Association), однако строгих спецификаций по реализации роуминга стандарт 802.11 не предусматривает.

Обеспечение безопасности. Для защиты WLAN стандартом IEEE 802.11 предусмотрен целый комплекс мер безопасности передачи данных под общим названием Wired Equivalent Privacy (WEP). Он включает средства противодействия несанкционированному доступу к сети (механизмы и процедуры аутентификации), а также предотвращение перехвата информации (шифрование).

Сейчас наибольшее распространение получил стандарт IEEE 802.11b. Благодаря высокой скорости передачи данных (до 11 Мбит/с), практически эквивалентной пропускной способности обычных проводных ЛВС Ethernet, а также ориентации на диапазон 2,4 ГГц, этот стандарт завоевал наибольшую популярность у производителей оборудования для беспроводных сетей. В окончательной редакции стандарт 802.11b, известный так же, как Wi-Fi (Wireless Fidelity), был принят в 1999 году. В качестве базовой радиотехнологии в нем используется метод DSSS с 8-разрядными последовательностями Уолша. Поскольку оборудование, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала. Как и в случае базового стандарта 802.11, четкие механизмы роуминга спецификациями 802.11b не определены. Дальнейшим развитием семейства IEEE 802.11x явился стандарт IEEE 802.11a, который предусматривает скорость передачи данных до 54 Мбит/с (редакцией стандарта, утвержденной в 1999 году, определены три обязательных скорости - 6, 12 и 24 Мбит/с и пять необязательных - 9, 18, 36, 48 и 54 Мбит/с). В отличие от базового стандарта, ориентированного на область частот 2,4 ГГц, спецификациями 802.11а предусмотрена работа в диапазоне 5 ГГц. В качестве метода модуляции сигнала выбрано ортогональное частотное мультиплексирование (OFDM). Наиболее существенное различие между этим методо и радиотехнологиями DSSS и FHSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам 802.11а относятся более высокая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (оборудование для 2,4 ГГц может работать на расстоянии до 300 м, а для 5 ГГц - около 100 м).

Для полноты рассмотрения возможностей семейства IEEE802.11x представим краткую характеристику ряда других стандартов и их спецификаций. Стремясь расширить географию распространения сетей стандарта 802.11, IEEE разрабатывает универсальные требования к физическому уровню 802.11 (процедуры формирования каналов, псевдослучайные последовательности частот и т.д.). Соответствующий стандарт 802.11d пока находится в стадии разработки. Спецификации другого разрабатываемого стандарта 802.11е позволяют создавать мультисервисные беспроводные ЛС, ориентированные на различные категории пользователей, как корпоративных, так и индивидуальных. При сохранении полной совместимости с уже принятыми стандартами 802.11а и 802.11b он позволит расширить их функциональность за счет поддержки потоковых мультимедиа-данных и гарантированного качества услуг (QoS). Спецификации 802.11f описывают протокол обмена служебной информацией между точками доступа (Inter-Access Point Protocol, IAPP), что необходимо для построения распределенных беспроводных сетей передачи данных. Рабочая группа IEEE 802.11h рассматривает возможность дополнения существующих спецификаций 802.11 MAC и 802.11a PHY алгоритмами эффективного выбора частот для офисных и уличных беспроводных сетей, а также средствами управления использованием спектра, контроля излучаемой мощности и генерации соответствующих отчетов. Предполагается, что решение этих задач будет базироваться на использовании протоколов Dynamic Frequency Selection (DFS) и Transmit Power Control (TPC), предложенных ETSI. Указанные протоколы предусматривают динамическое реагирование клиентов беспроводной сети на интерференцию радиосигналов путем перехода на другой канал, снижения мощности либо обоими способами.

Спецификации стандарта IEEE 802.11i позволят расширить возможности протокола 802.11 MAC, предусмотрев средства шифрования передаваемых данных, а также централизованной аутентификации пользователей и рабочих станций. В результате масштабы беспроводных локальных сетей можно будет наращивать до сотен и тысяч рабочих станций. В основе стандарта лежит протокол аутентификации Extensible Authentication Protocol (EAP), базирующийся на PPP. Сама процедура аутентификации предполагает участие в ней трех сторон - вызывающей (клиента), вызываемой (точки доступа) и сервера аутентификации (как правило, сервера RADIUS). В то же время новый стандарт, судя по всему, оставит на усмотрение производителей реализацию алгоритмов управления ключами. Разрабатываемые средства защиты данных должны найти применение не только в беспроводных, но и в других локальных сетях - Ethernet и Token Ring. Поэтому будущий стандарт получил номер IEEE 802.1X, а его разработку группа 802.11i ведет совместно с комитетом IEEE 802.1.

Спецификации стандарта 802.11g, находящиеся сейчас в стадии рассмотрения, представляют собой развитие стандарта 802.11b и позволяют повысить скорость передачи данных в беспроводных ЛВС до 22 Мбит/с (а возможно, и выше) благодаря использованию более эффективной модуляции сигнала. Из нескольких предложений по базовой радиотехнологии для данного стандарта рабочая группа IEEE недавно выбрала решение компании Intersil, основанное на методе OFMD. Одним из достоинств будущего стандарта является обратная совместимость с 802.11b.

Спецификации стандарта 802.11j будет оговаривать существование в одном диапазоне сетей стандартов 802.11a и HiperLAN2.

Нельзя не упомянуть деятельность IEEE в области технологий LMDS и MMDS (правый верхний угол рис.2). Местные и многоканальные многоточечные распределительные системы LMDS и MMDS (которые называют так-же «сотовым телевидением » и «беспроводным КТВ »), первоначально предназначавшиеся для трансляции телепрограмм в районах, не имеющих кабельной инфраструктуры, в последнее время все чаще используются для организации широкополосной беспроводной передачи данных на «последней миле ». Радиус действия передатчиков MMDS, работающих в диапазоне 2,1 –2,7 ГГц, может достигать 40 –50 км, в то время как максимальная дальность передачи сигнала в системах LMDS, использующих значительно более высокие частоты в области 27 –31 ГГц, составляет 2,5 –3 км. Массовому распространению этих систем до сих пор мешало отсутствие индустриальных стандартов и, как следствие, несовместимость продуктов разных производителей. В начале 2000 года для изучения различных решений и выработки единых правил построения систем широкополосной беспроводной связи в IEEE был создан рабочий комитет 802.16. Первоначально он сосредоточился на вопросах стандартизации систем LMDS диапазона 28 –30 ГГц, однако вскоре полномочия комитета были распространены на область частот от 2 до 66 ГГц и в его составе образовано несколько рабочих групп. Группа 802.16.1 разрабатывает спецификации радиоинтерфейса для систем, использующих диапазон 10 –66 ГГц. Рабочая группа 802.16.2 занимается вопросами «сосуществования » сетей фиксированного широкополосного доступа в нелицензируемых диапазонах 5 –6 ГГц (в частности, с беспроводными ЛС на базе стандарта 802.11а). Наконец, группа 802.16.3 готовит спецификации радиоинтерфейса для лицензируемых систем диапазона 2 –11 ГГц. Главной целью создания этой группы стало содействие ускоренному развертыванию систем MMDS путем предоставления производителям возможности создавать совместимые продукты на основе единого стандарта.

Стандарты разрабатываются на базе единой эталонной модели, объединяющей интерфейсы трех типов в тракте связи между абонентскими устройствами или сетями (например, ЛВС или учрежденческими АТС) и транспортной сетью (ТфОП или Интернет). Первый радиоинтерфейс определяет взаимодействие абонентского приемо-передающего узла с базовой станцией, второй включает в себя два компонента, охватывающие обмен сигналами между радиоузлами и «находящимися за ними » сетями - абонентской и транспортной (в детальной проработке спецификаций этого интерфейса участвуют и другие комитеты IEEE). Спецификации третьего, дополнительного радиоинтерфейса определяют использование повторителей или отражателей для увеличения зоны охвата системы и обхода препятствий на пути распространения сигнала.

Комитетом 802.16 уже приняты предварительные спецификации радиоинтерфейсов систем диапазона 10 – 66 ГГц, использующих технологии доставки сигнала с одной несущей. Стандарт 802.16а определяет для систем диапазона 2 – 11 ГГц оба метода передачи сигнала - с одной несущей и OFDM, а стандарт 802.16b для диапазона 5 – 6 ГГц определяет технологию OFDM.

Европейским «ответом » созданию американских стандартов явилась разработка технологии HiperLAN2 (High Perfomance Radio LAN), которая обещает стать основным конкурентом технологий беспроводных ЛС 802.11. Инициаторами и активными сторонниками нового стандарта являются компании Nokia и Ericsson. Так же, как и 802.11а, стандарт HiperLAN2 ориентирован на работу в диапазоне 5 ГГц и способен обеспечить скорость передачи данных до 54 Мбит/с. Оба стандарта используют сходные методы модуляции сигнала на основе мультиплексирования с ортогональным разделением частот (OFDM), однако имеют различные спецификации протоколов доступа к среде MAC. Если для 802.11а он аналогичен Ethernet, то в HiperLAN2 больше напоминает АТМ. Другим отличием HiperLAN2 от 802.11а, которое может дать ему некоторое преимущество над конкурентом, стала поддержка трафика мультимедиа и QoS (802.11а ориентирован в основном на передачу данных). По информации ETSI, разработка стандарта ведется с учетом совместимости оборудования с системами 802.11а.

Американская технология HomeRF ориентирована на создание «домашней мультимедийной среды », объединяющей в себе каналы передачи данных, телефонии, аудио-и видео-информации, возможно в перспективе телеметрии охранных систем и систем жизнеобеспечения. Кроме того, технология позволяет обеспечить выход в Интернет с достаточно большой скоростью. Отсюда и предъявляемые требования к технологии: низкая стоимость, малое энергопотребление (особенно для портативных устройств), уменьшенные габариты, простота технической и программной инсталляции. Структура домашней мультимедийной сети, построенной по технологии HomeRF, представлена на рис.3. В качестве мобильных терминалов могут выступать персональные компьютеры, беспроводные телефонные трубки, гарнитуры. Точка доступа (на рисунке обозначенная как базовая станция) обеспечивает проводную связь с Интернет.

Технология использует диапазон рабочих частот 2,4 ГГц, применяется адаптивная ППРЧ с числом скачков 50 – 100 в секунду. Первый вариант стандарта обеспечивал пиковую скорость передачи данных до 1,6 Мбит/с и типичную дальность связи до 50 м. Второе поколение HomeRF 2.0 позволяет передавать данные со скоростью до 10 Мбит/с. Оба варианта характеризуются в настоящее время малым потреблением мощности абонентскими терминалами в режиме ожидания при наличии связности по протоколу TCP/IP (менее 10 мВт в режиме «on line »). Третье поколение технологии обеспечит скорость передачи до 20 Мбит/с.

Спецификации, описывающие сетевой интерфейс, относятся к двум нижним слоям семиуровневой модели OSI (Open Systems Interconnection)(см.рис.4).

Второй уровень (управление передачей данных - data link control, DLC) в данном случае определяет управление доступом к среде передачи (MAC) и обеспечивает особенности передачи речи или приоритетных данных, безопасность связи, роуминг и соответствие верхним уровням модели. Параметры обоих нижних уровней в данном стандарте совместно оптимизированы для обеспечения заданных требований по внутри-и внесистемной ЭМС.

Технология HomeRF обеспечивает три типа передачи данных (см.рис.4):

  • асинхронный, без установления соединения типа «передача данных пакетами » (или «беспроволочный Ethernet ») на основе протокола TCP/IP («Ethernet » Data Path);
  • распределенный по приоритетам - сеансовая передача мультимедийных данных на основе UDP/IP (Streaming Data Path);
  • изохронная, дуплексная, симметричная, двусторонняя передача для ведения телефонных переговоров в соответствии с DECT-протоколом (Toll Quality Voice Path).

Временной домен построен таким образом, что в пределах временного интервала (10 или 20 мс) первыми передаются приоритетные данные (всего возможно наличие до восьми уровней приоритета). Последняя часть основной длительности домена предназначена для передачи сигналов речевого обмена и делится на соответствующее число слотов фиксированной длины. Передача речи организуется на основе протоколов верхнего уровня стандарта DECT. Более того, в технологии HomeRF непосредственно применяются технические решения производителей оборудования DECT. Важным является то, что чем меньше речевой обмен, тем выше скорость передачи данных. В зависимости от величины речевого трафика 10 или 20 мс длительности временного домена отводится для передачи асинхронного трафика. Одновременно может осуществляться передача до восьми потоков пакетов, при этом очередность передачи определяется заданным приоритетом. Однако, если число потоков меньше восьми, резервирование пакетов (задержка передачи) отсутствует. Последняя часть домена обеспечивает передачу потерянных речевых пакетов на другой частоте, что уникально в данной технологии и позволяет обеспечить качество передачи речи, соответствующее проводной связи.

Сравнение ряда технологий

Начнем с левого нижнего угла рисунка и сравним между собой технологии Bluetooth и ZigBee. Результаты сравнительного анализа представлены в виде табл.2.

Примечания:

  1. Скорость передачи в радиолинии, использующей дискретные, например, цифровые сигналы, измеряется в бодах, что соответствует числу дискретных изменений параметров сигнала в единицу времени. Иногда данный параметр называют технической скоростью передачи, так как он характеризует работу модема радиолинии. Информационная скорость передачи измеряется в битах или байтах, передаваемых в единицу времени, и характеризует производительность источника информации. Потребителя интересует «битовая » скорость передачи, а производитель реализует ее с помощью конкретного модема. Отсюда следует расхождение в значениях данных параметров для одной и той же радиолинии.
  2. Абонентские терминалы могут находиться в трех режимах: активном (ведется передача), в режиме дежурного приема (терминал готов к немедленной передаче) и режиме «сна », из которого терминал выходит лишь периодически и достаточно долго. Последний режим резко уменьшает энергопотребление абонентского терминала.

Теперь сравним между собой технологии HomeRF и IEEE802.11х. В качестве показателей соответствия рассматриваемых технологий решаемым задачам примем следующее: стоимость, качество речевого обмена, поддержку мультимедийного обмена, скорость передачи данных, дальность связи, потребляемую мощность, массо-габаритные параметры, топологию сети, внешнюю ЭМС, внутреннюю ЭМС, защиту от перехвата и наличие роуминга вне помещения. Технологии будем сравнивать по абсолютным показателям данных параметров.

Стоимость. Более низкая сложность дает HomeRF преимущество по стоимости перед IEEE802.11. В ближайшие несколько лет при одинаковых объемах производства HomeRF будет иметь преимущество по параметру ВОМ (Bill of Materials) не менее чем с коэффициентом 2.

Качество речевого обмена. Технология HomeRF обеспечивает многоканальный речевой обмен с показателями качества, соответствующими проводной связи, а технология IEEE802.11 явно не удовлетворяет современным требованиям. В данном аспекте HomeRF ориентируется на стандарт DECT с его проверенной технологией. IEEE802.11 вообще не ориентирован на речевой обмен, для обеспечения которого необходимо использование специальных дополнительных устройств. Однако и в этом случае передача речи не защищена от внешних воздействий. В наличии и такой недостаток, как несовместимость с технологией DECT.

Поддержка мультимедийного обмена. Технология HomeRF поддерживает независимую от речевого обмена многонаправленную мультимедийную передачу с несколькими приоритетами доступа. IEEE802.11b и IEEE802.11а позволяют передавать данные с большой скоростью, однако при наличии значительного трафика асинхронных данных на сети возможны нежелательные последствия. Данную проблему решает группа разработчиков IEEE802.11е путем совершенствования уровня МАС. Имеются наработки частных компаний в данном направлении, но это «уже не технология IEEE802.11 ».

Таблица 2.Сравнение технологий Bluetooth и ZigBee

Bluetooth ZigBee
Назначение
Для построения сетей связи динамической структуры (постоянно добавляются новые элементы и выходят из сети имеющиеся, конфигурация топологии сети изменяется) Сети передачи данных со статической структурой (топология сети длительное время постоянна, номенклатура элементов изменяется редко)
Беспроводная передача звуковых сигналов (речи) Большое число оконечных устройств
Передача неподвижной графики и изображений Большая длительность периода обращения главной станции сети оконечным устройствам
Передача файлов Передача пакетов данных небольшой величины
Отличия радиоинтерфейсов
Программная перестройка радиочастоты (FHSS) Прямое расширение спектра (DSSS)
Скорость передачи:1 МБод, пиковая скорость передачи данных ~720 кбит/с Скорость передачи:62,5 кБод,4 бит/символ, пиковая скорость передачи данных ~128 кбит/с
Энергопотребление
Организовано аналогично мобильному телефону (регулярная подзарядка) 2+года от пары батареек типа ААА
Обеспечивает максимальную производительность сети данной структуры Оптимизировано для режима «сна » оконечного устройства
Временные параметры протоколов
Оптимизированы для работы сети в критических ситуациях:
Время «прописки » нового оконечного устройства в сети не менее 3 с Время «прописки » нового оконечного устройства в сети 30 мс
Время перехода оконечного устройства из режима сна в активный режим 3 с Время перехода оконечного устройства из режима сна в активный режим 15 мс
Время доступа главной станции к активному оконечному устройству 2 мс Время доступа главной станции к активному оконечному устройству 15 мс
Особенности реализации
Низкая стоимость расширения сети Минимальная стоимость оконечных устройств
Расширенная программная поддержка за счет возможностей ПК Минимальное программное обеспечение и недорогой процессор (80С51)
Реализация возможностей протоколов IEEE802.11x при наличии упрощенного радиооборудования Отсутствие необходимости поддержки работы оконечного устройства со стороны ПК
Ориентация на производство интегрированных чипов для различных приложений

Скорость передачи данных . HomeRF и IEEE802.11 обеспечивают необходимую для высокоскоростной системы скорость передачи, но для HomeRF его дальнейшее развитие до скоростей порядка 20 Мбит/с не связано с такими глобальными проблемами, как для IEEE802.11 (переход в новый диапазон частот). IEEE802.11b также развивается в направлении увеличения скорости передачи данных до 20 Мбит/с с сохранением обратной совместимости (группа разработки IEEE802.11g), однако предлагаемые решения приводят к нарушению существующих правил использования диапазона 2,4 ГГц. Скорее успеха добьется IEEE802.11а, но она не обладает совместимостью с существующей IEEE802.11b.

Дальность связи. IEEE802.11 первоначально была рассчитана на работу при отсутствии внешних мешающих воздействий, в то время как HomeRF разработана для условий сложной электромагнитной обстановки.

Потребляемая мощность . Технология HomeRF оптимизирована для низкого энергопотребления АТ в режиме ожидания. То же относится и к активной фазе работы устройств.

Массо-габаритные параметры . Техника HomeRF имеет значительно более простое устройство портативных компонентов. Для IEEE802.11 также широко применяются PC Card (или PCMCIA Card), однако наименьшие параметры соответствуют Compact Flash Card, которая пока может использоваться только в HomeRF.

Топология сети. Технология HomeRF одновременно поддерживает взаимодействие элементов иерархической сети и элементов одноуровневой сети. Иерархическая структура идеальна для высококачественной передачи речи и интернет-приложений типа webcasting. Одноуровневая структура удобна при эффективном распределении ресурсов сети (например, для доступа к обслуживающему прибору). Bluetooth - по существу система типа «точка - многоточка ». Это эффективно в сети «главный компьютер/сеть пользователей » (особенно с учетом того, что главный элемент может не определяться заранее). Однако данный факт изначально определяет неэффективное использование «пропускной способности системы » в целом. Варианты стандарта IEEE802.11 могут функционировать в обоих типах сетей (PCF - Point Coordination Function или DCF - Distributed Coordination Function), но не одновременно в обоих. Существующие изделия варианта IEEE802.11b функционируют только в DCF. Уменьшение потребляемой мощности и реализацию приоритетной передачи данных можно достичь в более сложной и дорогой PCF. Исследовательская группа IEEE802.11e активно изучает вопросы развития PCF на основе изменения уровня MAC, что может в корне изменить развитие технологии варианта IEEE802.11b в направлении потоковой передачи данных. Дополнительной сложностью при решении данной задачи явится обеспечение роуминга потребителей.

Внешняя ЭМС. HomeRF был изначально разработан, чтобы успешно противодействовать внешнему вмешательству в диапазоне 2,4 ГГц. Для сохранения высокого качества речевого обмена в условиях воздействия внесистемных помех предусмотрена особая технология повторной передачи пораженных речевых пакетов. В отсутствие предельного трафика речевого обмена обеспечивается качественная передача потоков данных на основе использования ППРЧ. К настоящему времени стандарт IEEE802.11b исследован гораздо больше на предмет эффекта воздействия нежелательных излучений, хотя имеющиеся данные во многом противоречивы. Так, например, большинство пользователей не обращает внимания на уменьшение на 10 –40% скорости передачи устройства, находящегося рядом с микроволновой печью. Большой проблемой для сетей IEEE802.11 являются существенные флуктуации качества передачи речи при значительном объеме передачи данных (внутренняя перегрузка сети). Вариант IEEE802.11a «не зависит » от интерференционных проблем сегодня только потому, что в настоящее время диапазон 5 ГГц относительно свободен, однако в перспективе его подстерегают те же проблемы.

Внутренняя ЭМС. Цель разработки IEEE802.11 - эффективная организация ЛВС на одном большом предприятии, а не на многих малых, размещенных рядом друг с другом. Оптимизировалась производительность системы в целом, а не одного или группы пользователей. При обнаружении излучения (даже с уровнем ниже мешающего) устройство перестает работать в сети, и две реально не мешающие друг другу сети перестают функционировать. Технология HomeRF потенциально лишена этого недостатка.

Защита от перехвата. Рассматриваемые стандарты являются цифровыми и использование стандартных процедур шифрования и аутотенфикации защищают их на бытовом уровне от радиоперехвата. Однако от специальных систем они не имеют достаточной защиты. Проведенные исследования показали вскрываемость системы защиты IEEE02.11b и возможность подключения устройства пользователя к внешней сети для несанкционированного доступа к его информации или ввода в него дезинформации даже без определения шифроключа. HomeRF обеспечивает лучшую защиту на логическом уровне.

Роуминг вне помещения. Обеспечивается обоими стандартами.

Интегральный вывод из проведенного анализа целого ряда технологий следующий: каждая технология разработана для своей цели. Стандарт IEEE802.11 рассчитан на использование в сфере бизнеса. Технология HomeRF предназначена для создания домашней мультимедийной сети с широкополосным доступом пользователей к Интернету. Bluetooth обеспечивает беспроводную связь в подвижных (транспортных) системах и в помещениях небольшого объема. ZigBee является стандартом для создания технологических сетей обмена телеметрией и командами управления.

В настоящее время преодолеть разногласия отдельных групп разработчиков и производителей технологий передачи данных не удалось. Удастся ли создать единую технологическую платформу для передачи данных? Пока что решение этой задачи не очевидно.

Владимир Дмитриев

Человек – существо ленивое. Ему куда проще нажать пару кнопок, сидя на диване, нежели пойти на кухню и ткнуть те же кнопки на чайнике или тостере. Вот, наверное, так и появился архаичный инфракрасный пульт ДУ для телевизоров, а затем и прочей техники - от стереосистем до кондиционеров.

А «умные» беспроводные технологии, на самом деле, появились в бытовой технике много лет назад. И сначала их предназначение было сугубо утилитарным: люксовые стиральные машины Miele могли с помощью Wi-Fi обновлять свою прошивку и добавлять новые программы стирки.

Расширение возможностей

Бытовая техника с Wi-Fi дня сегодняшнего использует интернет в основном для дистанционного управления (например, чтобы запустить чайник или сварить кофе к вашему приходу) или же для скачивания новых рецептов (в случае мультиварок или кофемашин).

Вообще, этот дистанционный запуск породил такую, казалось бы, дикую вещь как чайник с «голубым зубом» (который подключается к управляющему модулю с Wi-Fi-приемопередатчиком). Да, это самый обычный чайник, в котором есть самый настоящий Bluetooth. Для чего? Чтобы запустить со смартфона, прийти на кухню и налить себе чай. И если в случае с кофеваркой это еще как-то можно оправдать (запустил кофемолку, зерна смололись, затем кофе сварилось и приходишь на кухню за уже готовым напитком), то в случае электрочайника это кажется пока что как минимум странным: они вскипают за минуту, поэтому на первый взгляд данная функция кажется излишним наворотом. С другой стороны, если кипятить воду для детского питания и зеленого чая, это может уже занять какое-то время и тогда Wi-Fi приобретает какой-то смысл.


Однако, есть и ощутимый плюс от новых технологий: расширенное управление бытовым прибором. То есть если у него очень много функций, управлять ими с небольшой и не всегда удачно продуманной панели управления иногда откровенно неудобно, и тут на помощь приходит смартфон/планшет, на экране которого можно отображать сколько угодно много функций. Это открывает перед производителями просто огромные возможностями, и они уже начали ими пользоваться.

Будущее

В идеале беспроводные технологии должны обслуживать человека по полной программе. Холодильник сам заказывает необходимые продукты на основе списка с оплатой по карте (некоторые уже умеют это делать), сам себя диагностирует и вызывает мастера в случае неполадки (первую часть они уже тоже умеют), сам следит за состоянием продуктов и предупреждает об окончании срока их действия. Стиральная машина вкупе с сушильной сама будет дозировать порошок и кондиционер, сама все постирает и переложит в свою сушильную часть для сушки, а человеку останется только вынуть и погладить сухое белье.

На кухне тоже будут хозяйничать бытовые приборы с Wi-Fi. Кофеварка сама сварит кофе или чайник – чай к вашему приходу (уже могут), в мультиварке приготовится аппетитный ужин или завтрак (тоже уже умеют, разве что класть не могут в себя ничего), телевизор запишет интересную передачу по Дискавери и покажет ее как раз в момент ужина или завтрака (и это тоже уже давно возможно).

Все это должно происходить под полным и жестким контролем пользователя. То есть он в любой момент может зайти в управляющий интерфейс и посмотреть, как дела у чайника и достаточно ли там воды. А при необходимости ее можно и добавить (вот этого приборы пока не умеют).

Приложение для контроля бытовой техники тоже должно быть унифицировано. Если сейчас каждый вендор разрабатывает собственную экосистему для своих устройств, то в идеале будущего все приборы должны работать на единой ОС под управлением должным образом разработанных протоколов связи. Которые будут удобны, с открытым исходным кодом, а главное – безопасны в использовании.

Именно вопрос безопасности немаловажным является уже сейчас. У элементов системы умного дома сегодня безопасность хромает на обе ноги, и это идеальная среда для проникновения разного рода мошенников напрямую в ваш дом. Управляющие интерфейсы для бытовой техники сегодня защищены тоже очень слабо, поскольку пока еще системы умного дома не настолько имплементированы в нашу жизнь, чтобы на каждом шагу возникали прецеденты.

Что же есть на рынке?

Разнообразнее всего сейчас на рынке бытовая техника со встроенными беспроводными протоколами от Redmond: этот производитель первым начал массово выпускать приборы с беспроводными технологиями для дистанционного управления через фирменное приложение R4S, но по достаточно высокой цене, оправданной разве что для новинки. Огромный минус всех Wi-Fi-девайсов Redmond упомянут выше: необходимость держать дома дополнительный гаджет, который будет передавать Bluetooth от прибора в Wi-Fi домашней сети (а далее - везде). Это мультиварка SkyCooker M800S (9 тыс. руб.), весы кухонные SkyScales 741S (2,5 тыс. руб.), капельная кофеварка со встроенной кофемолкой SkyCoffee M1505S (9 тыс. руб.), напольные весы SkyBalance 740S (4,5 тыс. руб.) и чайник SkyKettle M170S (7 тыс. руб.).

Есть и малоизвестные производители. К примеру, кухонные смарт-весы Bite от компании BlueAnatomy за 9 тыс. рублей. Или напольные весы Fitbit Aria Smart Scale со средней ценой в 12 тыс. рублей. Чайники с Wi-Fi выпускает и Polaris: модель PWK 1792 CGL с 12-ю (!) программами кипячения воды за 6.5 тыс. руб.

А кофемашина за 170 тыс. рублей Philips Saeco GranBaristo Avanti HD8969 с Bluetooth – высший пилотаж даже с полностью автоматической очисткой. И, кстати, это именно тот случай, когда все богатство функциональности сосредоточено в приложении для планшета (для смартфона экран маловат будет).

Духовки с Wi-Fi на российском рынке представлены сейчас фирмой Gorenje, но их цена в 80–100 тыс. рублей уже совсем не радует, а возможности загрузки новых рецептов таких денег не стоят совсем.

Сплит-системы с Wi-Fi тоже уже не редкость: есть как модели от Timberk в широком ценовом диапазоне от 16 до 60 тыс. рублей серий АС TIM и STORM, так и просто модули, дополняющие функционал обычных кондиционеров от Haier или Fujitsu.

А вот в сегменте мультиварок все гораздо интереснее: некоторые из них умеют даже скачивать новые рецепты через Интернет. На российском рынке представлены в основном вышеупомянутая модель от Redmond и мультиварки от Polaris: именно во множественном числе, так как их наберется почти десяток в ценовом диапазоне от 9 до 19 тыс. рублей.

Можно ли без этого обойтись?

Безусловно, без Wi-Fi и Bluetooth в бытовой технике обойтись можно. Наши бабушки и котелки над кострах вешали, чтобы вскипятить воду, а о мультиварках даже и не мечтали. Смысл этого новшества вполне очевиден, как и технологического прогресса вообще: облегчить жизнь человеку, чтобы у него оставалось больше времени на более приятные занятия, нежели готовка, варка кофе, выпечка и прочие обыденные работы по дому. Роботы-пылесосы, опять же, могут эту жизнь облегчить.

С другой стороны, проблем появляется даже больше. Придумали социальные сети для мгновенного общения без использования телефонов – и люди почти перестали общаться друг с другом вживую. Внедрили робот-пылесос в экосистему «умного дома» - но влажная уборка пола по-прежнему актуальна, и покупка очередной инновации – паровой швабры – не решает проблему полностью, а просто предлагает еще один способ этого решения. Посудомоечная машина избавляет вроде бы от необходимости вручную мыть посуду и даже воду экономит – но тарелок должно быть очень много (средняя посудомойка рассчитана на 8-10 комплектов посуды для полной загрузки), плюс раковину все равно придется использовать, смывая остатки пищи.


Сюда можно добавить и тот факт, что техника с беспроводными технологиями сегодня уже усложняет жизнь. Скажем, вышеупомянутая серия беспроводных кухонных приборов Redmond R4S (Ready for Sky!) вместо того, чтобы подключаться к обычному домашнему роутеру по 802.11, подключается к еще одному гаджету наподобие планшета или смартфона по Bluetooth (то есть вам нужно иметь постоянно лежащий дома смартфон или планшет), на него ставится управляющая программа, и уже она связывается с пользователем и позволяет управлять чайником и кофеваркой. Зачем нужно было так накрутить - до конца непонятно. Возможно, потому, что модуль Wi-Fi в каждом устройстве мог сделать их дороже. Но это маловероятно, поскольку модули на самом деле стоят копейки: а вот то, что они могли усложнить программную или аппаратную часть в принципе - это может быть. И вряд ли мы сильно ошибемся, если предположим, что внедрение Bluetooth/Wi-Fi в приборы еще принесет массу других сюрпризов. К тому же цена на них пока еще очень высока: понятно, что в нее входит не только цена копеечного модуля Wi-Fi/Bluetooth, но и работа как инженеров, так и программистов.

Ответить на вопрос «покупать или нет» сегодня можно так: скорее нет, чем да. Да, сейчас еще есть некий «вау-эффект» от того, что можно, лежа в кровати, сварить себе кофе. Безусловно, удобно с работы запустить мультиварку, чтобы поужинать сразу же по возвращении. Но различные «детские болезни» наподобие избыточного количества устройств у девайсов Redmond SkyCooker пока еще только начали проявляться, и, поскольку сегмент только начал развиваться, они еще прибавятся.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!