Типы сенсорных дисплеев в мобильном телефоне. Какой сенсорный экран лучше? Типы сенсорных экранов

Перед тем как рассмотреть емкостной или резистивный экран, требуется определиться с тем, что собой представляет сенсорная технология вообще. Тут все понятно: это экран, который определяет координаты нажатия. Если выражаться научно, то тут подразумевается метод управления интерфейсом, с помощью которого пользователь может нажимать непосредственно на интересующее место. На данный момент существует несколько методов реализации сенсорных экранов. Стоит рассмотреть каждый по отдельности.

Резистивная технология

Чтобы определиться, какой тип экрана, емкостный или резистивный, вам больше подходит, необходимо рассмотреть их. Второй вариант предполагает использование определенной производственной технологии. Снизу размещена панель из стекла, поверх которой находится прозрачная гибкая мембрана. На панели и мембране присутствует токопроводящее покрытие, то есть резистивное. При нажатии на экран происходит замыкание в определенной точке. Если знать напряжение на электродах с одной стороны и измерить его же на мембране, то получается отследить одну координату. Две координаты потребуют отключить одну группу электродов, чтобы включить другую. Это все в автоматическом режиме делает микропроцессор, как только происходит изменение напряжения на мембране. Резистивные экраны не позволяют реализовать мультитач.

Особенности резистивной технологии

Как и у любого другого типа реализованных устройств, тут имеются определенные черты, которые являются положительными или отрицательными в зависимости от ситуации. В качестве преимуществ обычно отмечается дешевое производство, а также возможность нажимать чем угодно, так как требуется только продавить мембрану. Точность позиционирования повышается за счет применения стилусов.

Негативные моменты

Основными недостатками можно назвать низкую степень пропускания света, высокую скорость появления царапин на поверхности, возможность нажатий в одну точку не более 35 миллионов раз, невозможность реализовать мультитач. Если вы не можете решить, емкостной или резистивный экран выбрать, то важно отметить еще и невозможность использования жестов типа скольжения, так как требуется нажать пальцем на экран и вести его не отпуская. В устройствах с такими элементами управления лучше использовать софт, требующий минимального использования «листающих» жестов.

Разбираясь в особенностях этой технологии, стоит отметить, что она может быть реализована несколькими способами, имеющими определенные различия. Емкостный сенсорный экран может быть просто емкостным и проекционно-емкостным. Первый вариант предполагает использование определенных элементов. Поверх стеклянной панели размещается прозрачный резистивный материал, например, сплав оксида олова или индия. По углам размещены электроды, которые подают небольшое переменное напряжение на проводящий слой. Если к экрану прикасаются токопроводящим предметом, то возникает утечка, и чем этот предмет ближе к электроду, тем ниже сопротивление экрана, то есть сила тока заметно увеличивается. А называется это все емкостной экран, так как переменный ток проводится предметом большей емкости. Чаще всего речь идет о пальце.

Особенности емкостных экранов

Как и прочие виды технологий, в данном случае речь идет о совокупности достоинств и недостатков. В качестве преимуществ перед остальными можно назвать высокую светопропускающую способность, значительный ресурс нажатий, простоту и удобство работы методом «листания». Недостатки здесь тоже имеются: требуется использовать только пальцы либо специализированные стилусы. Обычный емкостной экран не поддерживает технологию мультитач. Часто бывают случайные нажатия. К примеру, система может распознавать жест как «листание» даже в том случае, когда он не предполагается, так как сложно удержать палец строго на одном месте после нажатия.

Проекционно-емкостной сенсорный экран

В данном случае устройство отличается от предыдущих довольно сильно. Внутренняя сторона экрана представляет собой сетку электродов. Если происходит прикосновение предметом большей емкости к электроду, то образуется конденсатор, обладающий постоянной емкостью. Такие экраны используются на улице, так как позволяют устанавливать стекло, толщина которого достигает 18 мм, при этом удается получить не только максимально твердую поверхность, но и обеспечить вандалоустойчивость.

Особенности проекционно-емкостных сенсоров

В данном случае, как и во всех остальных, имеются определенные преимущества и недостатки, о которых следует знать. В качестве достоинств можно назвать возможность реализации мультитач, реагирование на нажатие в перчатке, высокую степень пропускания света, а также долговечность самого экрана. Такие экраны способны реагировать на приближение пальцев без факта нажатия. Порог, когда происходит завершение касания, обычно настраивается программно. Крайняя точка - это обычно сам экран, так как продавливать его совершенно бесполезно.

Если рассматривать проекционно-емкостной экран, то он обладает и определенными недостатками, в качестве которых принято называть сложную и довольно дорогую электронику, невозможность использования обычного стилуса, вероятность случайных нажатий.

Мультитач технология

Невозможно определить подходящий тип сенсорного экрана, емкостный или резистивный, не решив вопрос, касающийся реализации данной технологии. Мультитач - это возможность множественных касаний. Настоящая реализация предполагает отслеживание координат нескольких нажатий одновременно. Если в смартфоне или планшете реализована такая технология, то с его помощью можно имитировать игру на музыкальном инструменте, к примеру, гитаре. Следует разобраться с этим подробнее.

Можно взять обычный емкостный или резистивный экран. Если нажать сначала, например, в левый верхний угол, а потом, не отрывая палец, другим нажать в правый нижний, то электроникой в качестве координат будет определен центр экрана, то есть середина отрезка между парой этих касаний. Это будет видно, если запустить специальное приложение, отслеживающее координаты нажатия. Однако встает вопрос о том, а как же реализовано масштабирование картинок, если все равно распознается только одно нажатие?

Тут все просто. Это самый обычный программный трюк. Вы нажали на емкостной экран - электроника это определила. Это будет точка «А». Теперь, не отпуская пальца, вы нажимаете в другое место, которое будет точкой «В», получается, что в этот момент точка нажатия переместилась мгновенно в сторону, образовав «С». Именно в этот момент, когда фактически отпускания пальца не было, а точка нажатия мгновенно переместилась, программно обрабатывается в качестве мультитача. Далее, если точка «С» становится ближе к «А», то определяется сдвигание пальцев, то есть в случае с изображением, картинку надо уменьшить, и наоборот. Еще один момент: если точка «С» описывает дугу вокруг одной из точек, то программа определяет это как вращение одного пальца вокруг другого, что вызывает необходимость поворота картинки в соответствующую сторону.

Использование резистивного и емкостного экранов

Профессиональными разработчиками традиционно используется первый тип, так как он позволяет управлять любым предметом при различных погодных условиях. При реализации резистивной технологии используется большее количество датчиков на квадратный сантиметр в сравнении с емкостной, поэтому на дисплее можно отображать мельчайшие значки, на которые допускается нажимать иглой. К примеру, операционная система Windows Mobile разрабатывалась с учетом такой особенности, поэтому хорошо работает с резистивными экранами. Такие дисплеи почти нечувствительны к случайным нажатиям. Однако многие разработчики сейчас нацелены создавать приложения, ориентированные на емкостный сенсорный экран. Это уже становится проблемой для устройств, выполненных с применением резистивной технологии.

Степень защищенности

Важно понимать, что для планшетных компьютеров и коммуникаторов дисплей является самой уязвимой частью. Емкостной экран является более предпочтительным вариантом в плане надежности. Его производительность в любых условиях заметно выше, а резистивные модели могут отказать, к примеру, если нести их вниз стеклом. Емкостный экран - это отказоустойчивый вариант. Даже если он сломан, то и дальше будет исполнять свои функции. Если решать, емкостный или резистивный экран выбрать, то стоит отметить, что в полевых условиях первый будет оптимальным вариантом.

Выводы

Если подводить итоги, то можно отметить, что оба варианта реализации дисплеев имеют свои преимущества и недостатки. При том что емкостный экран - это целая совокупность возможностей, резистивный ориентирован на использование в определенных ситуациях. Обычно все зависит от интерфейса, используемого в гаджете. удобен в использовании, площадь его нажатия заметно меньше, чем у пальца, однако при хорошей отзывчивости поверхности удобно обходиться и без этого приспособления. Постоянное совершенствование резистивных дисплеев привело к тому, что появились модели вполне твердые, то есть стойкие к формированию царапин, но при этом и отзывчивые. Такие варианты стали весьма удобны в эксплуатации.

Необходимость использовать специальный стилус для емкостных экранов иногда доставляет немалое неудобство, так как он обычно не идет в комплекте с устройством. А резистивная технология предполагает и сопровождение специальным приспособлением, и возможность нажатия любым твердым предметом. Одна из причин, по которой многие выбирают емкостный сенсорный экран - мультитач, однако стоит отметить, что чаще всего это программная реализация, как уже было описано, и при должном подходе она может быть применена и для резистивного. Проекционно-емкостная технология пока еще не стала настолько доступной, как этого хотелось бы.

Все, наверно, слышали о разработках компаний дисплеев с тактильной отдачей, и это уже давно не миф. Единственным препятствием на пути к широкой аудитории, является появление универсального экрана с наибольшей чувствительностью, то есть на сегодня перед специалистами стоит задача сделать тактильный дисплей, во всех отношениях, практичным. Такая альтернатива вибро-моторам поможет воссоздать контакт с устройством, как при кнопочном аппарате, и даже больше…

Сенсорные дисплеи недалёкого будущего

Благодаря некоторым компаниям прогресс технологии на лицо, и уже сейчас существует не один, а несколько прототипов. Одной из таких стала корпорация Майкрософт, её исследовательская группа «» под руководством Хонг Тан, смогла продвинуться в тактильном направлении.

Группа специалистов затратила несколько лет на создание экрана с обратной связью, и их труды уже сейчас представлены в нескольких вариациях, в том числе на базе Nokia Lumia. Убедиться в положении дел можно из видео ролика ниже:

Как утверждает ведущий сотрудник Хонг Тан, сенсорные дисплеи должны эволюционировать во что-то большее. «То, что можно считать действительно классным достижением, – это взять гладкий кусок стекла и сделать его чем-то особенным, – говорит г-жа Тан. – Это почти волшебство».

Исследователи из Майкрософт работают в двух направлениях, разрабатывая аппаратную и программную составляющую технологии. Главной задачей, является полная обратная связь, не только на нажатие цифровых кнопок, но и изображения в целом. Так некоторые варианты экранов дают реальные ощущения текстур под пальцами. Один из примеров – шахматная доска из приложения Nokia Lumia. Клетки разного цвета принимают различный тактильный эффект.

Вместо послесловия

В основном технология будущих экранов строится на стимуляции рецепторов на коже, а также мышечной моторики. На экранах можно будет ощутить не только продавливание поверхности под пальцем, но и характерный щелчок, свидетельствующий о контакте.
«Когда вы набираете текст на виртуальной клавиатуре смартфона, внешний слой в буквальном смысле моментально прогибается под вашими пальцами. Это совсем небольшой прогиб, но и его достаточно, чтобы ваши пальцы получили сигнал, напоминающий, что вы нажали на кнопку», – говорит г-жа Хонг.

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

Многие думают, что эра сенсорных экранов началась в нулевых, с выходом первых КПК (надеюсь, нет таких, кто думает, что первый сенсорный экран появился в iPhone?) Однако это не так - первым потребительским устройством с сенсорным дисплеем стал... телевизор в 1982 году. Годом позже появился первый сенсорный ПК от HP. Через 10 лет, в 1993 году, появился Apple Newton - родоначальник КПК, который ввел моду на стилусы (хотя это скорее была необходимость - экран-то резистивный), и уже в 2007 году с выходом iPhone появился современный емкостный экран в том виде, в котором мы все привыкли его видеть. Так что история сенсорных экранов насчитывает 35 лет, и за это время произошло достаточно много.


Уже из названия понятно, что лежит в основе таких дисплеем - это электрическое сопротивление. Устройство такого экрана просто: над дисплеем находится подложка (дабы при сильном нажатии его не деформировать), после чего идет один резистивный слой, изолятор и второй резистивный слой уже на мембране:


На левый и правый край мембраны и нижний и верхний край резистивного слоя на подложке подведено напряжение. Что происходит, когда мы нажимаем на такой дисплей? Резистивные слои замыкаются, сопротивление меняется, а значит меняется и напряжение - а это легко зарегистрировать, после чего, зная сопротивление единицы резистивного слоя, можно легко узнать сопротивление по обеим осям до точки нажатия, а значит и высчитать саму точку нажатия:


Это - принцип действия четырехпроводного резистивного экрана, и такие уже больше не используются по одной простой причине: малейшее повреждение мембраны с резистивным слоем ведет к тому, что экран перестает корректно работать. А с учетом того, что в такой экран обычно тыкают острым стилусом, добиться повреждения отнюдь не трудно.

Тогда решили сделать по-другому: мембрана стала токопроводящей, а на резистивном слое подложки теперь расположены все 4 электрода, но уже по углам, а напряжение подведено только к мембране - то есть экран стал пятипроводным. Что происходит при нажатии? Мембрана касается резистивного слоя, начинает идти ток, который снимается с 4 электродов, что опять же позволяет, зная сопротивление резистивного слоя, определить точку касания:


Вот этот тип уже более «вандалоустойчив» - даже при порезе мембраны экран продолжит функционировать нормально (кроме, разумеется, места пореза). Но, увы, это не отменяет других проблем, общих для всех резистивных экранов, а их много.

Во-первых, такой экран воспринимает только одно касание: несложно догадаться, что при нажатии сразу двумя пальцами экран будет думать, что вы нажали в середину линии, соединяющей точки нажатия. Вторая проблема - на экран действительно нужно давить, причем желательно острым предметом (ногтем, стилусом). Разумеется, привыкнуть к этому можно, но это зачастую приводило к характерным царапинам, что красоты экрану не добавляло. Третья проблема - такой экран пропускает не более 85% светового потока, и из-за его толщины нет ощущения того, что вы касаетесь пальцем изображения напрямую.

Но, тем ни менее, у него есть и плюсы: во-первых, разбить дисплей в таком экране очень и очень сложно - у него «тройная защита» в виде мембраны, изоляторов и подложки. Второй плюс - экрану безразлично, чем вы в него тыкаете - с ним можно работать и в обычных перчатках (что зимой очень актуально). Но, увы, это достоинства не перевесили недостатки, и с выходом iPhone начался бум на емкостные экраны.

Поверхностно-емкостные экраны

Это, можно сказать, переходный тип между привычными нам емкостными экранами (которые являются проекционными) и старыми резистивными. Принцип действия тут схож с пятипроводным экраном: есть стеклянная пластина, покрытая резистивным слоем, и 4 электрода по углам, которые подают на пластину небольшое переменное напряжение (почему не постоянное - объясню чуть ниже). При нажатии на такой экран токопроводящим заземленным предметом мы получаем в месте нажатия утечку тока, которую легко можно зарегистрировать:


Тут и разгадка, почему напряжение переменное - с постоянным при плохом заземлении могут быть перебои в работе, а с переменным такого нет.

Проблем у них тоже хватает: экран теперь менее защищен, и при повреждении стеклянной пластины перестает работать весь. Опять же не поддерживается мультитач, и более того - теперь экран не реагирует на руку в перчатке или же стилусы - они в основном не проводят ток.

Единственный плюс такого экрана - он стал тоньше и прозрачнее резистивного, но в общем-то это оценили немногие. Но все изменилось с выходом iPhone, где применялся несколько другой тип сенсорного экрана, который уже поддерживал мультитач.

Проекционно-емкостные экраны

Вот мы уже и подобрались к современному типу сенсорных экранов. По принципу работы он существенно отличается от предыдущих - тут электроды расположены сеткой на внутренней стороне экрана (а не 4 электрода по углам), и при нажатии на экран палец образует с электродами конденсаторы, по емкости которых и можно определить местоположение нажатия:

С таким устройством экрана можно нажимать на него сразу несколькими пальцами - если они расположены достаточно далеко (дальше, чем два соседних электрода в сетке), то такие нажатия будут определяться как разные - именно так и появился мультитач, сначала на 2 пальца в iPhone, а сейчас уже и на 10 пальцев в планшетах. Большее количество нажатий уже не нужно (людей больше чем с 10 пальцами маловато), да и определение одновременно больше чем 5-7 нажатий накладывает серьезную нагрузку на контроллер тача.

Из плюсов такого экрана, кроме поддержки мультитача - возможность сделать OGS (One Glass Solution): защитное стекло экрана с интегрированной сеткой электродов и дисплей представляют из себя одно целое: в таком случае толщина оказывается наименьшей, и кажется, что вы пальцами касаетесь изображения. Это же приводит к проблеме хрупкости: при появлении трещины на стекле гарантированно рвется сетка электродов, и экран перестает реагировать на нажатия.

Это - основные типы сенсорных экранов, однако есть и многие другие. Начнем, пожалуй, с самого старого типа, с которого сенсорные экраны и начинались.

Инфракрасные экраны

Опять же принцип действия понятен из названия: по краям экрана расположено множество светоизлучателей и приемников в ИК-диапазоне. При нажатии палец перекрывает часть света, что и позволяет определить местоположение нажатия. Плюсами таких экранов на заре их появления было то, что ими можно было оснастить любой дисплей, что и было сделано с телевизором в 1982. Минусы также очевидны - толщина такой конструкции оказывается внушительной, а точность позиционирования - достаточно низкой.

Тензометрические экраны

Экраны, которые реагируют на нажатие (сильное нажатие). Огромный их плюс в том, что они максимально «антивандальные», поэтому их и применяют в различных банкоматах, стоящих на улице.

Индукционные экраны

Из названия опять же все понятно: внутри экрана есть катушка индуктивности и сетка проводов. При касании экрана специальным активным пером меняется напряженность созданного магнитного поля - с помощью этого и регистрируется нажатие. Самый главный плюс такого экрана - максимально возможная точность, поэтому они хорошо зарекомендовали себя в дорогих графических планшетах.

Оптические экраны

Принцип основан на полном внутреннем отражении: стекло подсвечивается инфракрасной подсветкой, и пока нажатия нет, на границе стекла и воздуха лучи света полностью отражаются (то есть нет преломленного луча). При нажатии на такой экран появляется преломленный луч, а по углу преломления (ну или отражения) можно высчитать точку нажатия.

Экраны на поверхностно-акустических волнах

Пожалуй, одни из самых сложно устроенных экранов. Принцип работы заключается в том, что в толще стекла создаются ультразвуковые колебания. При прикосновении к вибрирующему стеклу волны поглощаются, а специальные датчики по углам это регистрируют и высчитывают точку прикосновения:


Плюсом этой технологии является то, что прикасаться к экрану можно любым предметом, не обязательно токопроводящим и заземленным. Минус - экран боится любых загрязнений, так что использовать его, например, в дождь, будет невозможно.

DST экраны

Их принцип действия основан на пьезоэлектрическом эффекте - при деформации диэлектрика он поляризуется, а значит - возникает разность потенциалов - а ее уже можно посчитать. Из плюсов - очень быстрая скорость реакции и возможность работы при серьезно загрязненном экране. Минус - для определения местоположения пальца он должен постоянно двигаться.

Вот в общем-то и все типы сенсорных экранов. Конечно, большинство из них диковинные и вы вряд ли с ними столкнетесь, но само разнообразие и развитие этой технологии радует.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!