Почему когда варишь переменный ток определение. Какой ток в обычной розетке: постоянный или переменный

Несмотря на то, что электричество прочно вошло в нашу жизнь, подавляющее большинство пользователей этого блага цивилизации не имеют даже поверхностного понимания, что такое ток, не говоря о том, чем отличается постоянный ток от переменного, какая между ними разница, и что такое ток вообще. Первым, кого ударило током, стал Алессандро Вольта, после чего он посвятил этой теме всю жизнь. Давайте и мы уделим внимание этой теме, чтобы иметь общее представление о природе электричества.

Томас Эдисон немного освежился в Нью-Йорке с уличными фонарями и его постоянным током. Переменный ток периодически меняется взад и вперед. Через секунду электричество в нашей электрической сети движется в 50 раз! После того, как были изобретены постоянный ток и переменный ток, оба изобретателя гарантировали друг друга. Не с оружием, а со словами. У них даже есть собаки, подключенные к электрической сети, чтобы показать, насколько опасно другое электричество.

Нам нужны оба типа электроэнергии, потому что оба имеют свои преимущества и недостатки. Он идеально подходит для зарядки аккумуляторов и аккумуляторных батарей. Им нужен постоянный ток для зарядки, потому что ток всегда должен чередоваться в одном направлении. Это также относится к некоторым бытовым приборам. Просто все, что связано с батареями и перезаряжаемыми батареями, требует постоянного тока для зарядки. Например, фонарик или ноутбук, в котором есть батареи. И такие устройства нуждаются в постоянном токе, т.е. постоянном токе.

Откуда берётся ток и почему он разный?

Мы попробуем избежать сложной физики, и будем использовать для рассмотрения этого вопроса метод аналогий и упрощений. Но перед этим напомним старый анекдот про экзамен, когда честный студент вытащил билет «Что такое электрический ток».

Извините профессор, я готовился, но забыл - ответил честный студент. - Как Вы могли! Упрекнул его профессор, Вы же единственный человек на Земле, который это знал! (с)

Но и телевидение или радио нуждаются в постоянном токе. Они не могут запускаться с переменным напряжением, которое всегда требует постоянного тока. Опять же, есть устройства, которые не имеют значения, что вы используете. Лампочки, например, просматривают этот сайт. Лампочка - это только провод, который нагревается, и текущее направление не имеет значения. Переменный ток используется с электродвигателями, то есть со всеми вращающимися устройствами. Например, блендер вращается. Или плита плиты также может работать с переменным током, который не поворачивается, однако он должен быть нагрет, а затем он как с лампочкой, в нем есть провод и тепло.

Это конечно шутка, но в ней огромное количество правды. Поэтому не станем искать Нобелевских лавров, а просто разберёмся, переменный ток и постоянный, в чём разница, и что принято считать источниками тока.

За основу мы примем допущение, что ток - это не движение частиц (хотя движение заряженных частиц тоже переносит заряд, а значит, создаёт токи), а движение (передача) избыточного заряда в проводнике от точки большого заряда (потенциала) к точке меньшего заряда. Аналогия - водохранилище, вода всегда стремится занять один уровень (уравнять потенциалы). Если открыть в плотине отверстие, вода начнёт течь под уклон, возникнет постоянный ток. Чем больше отверстие - тем больше воды будет протекать, сила тока вырастет, как и мощность, и количество работы, которую способен выполнить этот ток. Если не управлять процессом, вода разрушит плотину и немедленно создаст зону затопления с поверхностью одного уровня. Это короткое замыкание с выравниваем потенциалов, сопровождающееся большими разрушениями.

Но переменный ток имеет решающее преимущество, его можно производить в больших количествах на электростанциях, и его можно транспортировать намного лучше, чем постоянный ток, поскольку потери на больших расстояниях намного меньше. Таким образом, вне электростанции, перемените переменный ток в больших количествах на сухопутную линию, затем в распределительные коробки . Оттуда переменный ток распространяется на домашние хозяйства, и то, что мы тогда использовали, решает это устройство. Миксер будет напрямую использовать переменный ток.

Компьютер или телевизор сначала преобразуют переменный ток в постоянный ток. Это работает с так называемым преобразователем напряжения без проблем. Только благодаря преобразователю напряжения мы можем подключить телевизор к обычным источникам питания. Трансформатор напряжения уже установлен для всех устройств, которые требуют постоянного тока.

Таким образом, постоянный ток появляется в источнике(как правило, за счёт химических реакций), в котором возникает разница потенциалов в двух точках. Движение заряда от более высокого значения «+» к низкому «-» выравнивает потенциал, пока длится химическая реакция. Итог полного выравнивая потенциала, мы знаем - «батарейка села». Отсюда следует понимание, почему постоянное и переменное напряжение значительно отличаются по стабильности характеристик . Батарейка (аккумулятор) расходуют заряд, поэтому напряжение постоянного тока снижается со временем. Для поддержания его на одном уровне используют дополнительные преобразователи. Изначально человечество долго решало, чем отличается постоянный ток от переменного для повсеместного использования, т.н. «Война токов». Она закончилась победой переменного тока не только потому, что меньше потери при передаче на расстояние, но и генерация постоянного тока из тока переменного оказалась проще. Очевидно, что постоянный ток, получаемый таким образом (без расходуемого источника) имеет куда более стабильные характеристики. Фактически в этом случае переменное и постоянное напряжение жёстко связаны, и по времени зависят только от генерации энергии и количества расхода.

Электрическое сопротивление является мерой того, какое напряжение требуется для прохождения определенного тока через проводник. Это также означает, что определенное напряжение падает на каждый резистор в цепи. На практике существует три типа резисторов.

Резисторы сопротивления сопротивления в системах переменного тока. . На данный момент нас интересует только первый. Когда мы используем резистор как компонент, мы обычно говорим о омическом сопротивлении, т.е. о сопротивлении, которое не зависит от температуры, тока или напряжения. Таким образом, мы имеем постоянное сопротивление, и это позволяет использовать следующие примеры приложений.

Таким образом, постоянный ток по своей природе - это возникновение неравномерного заряда в объёме (химическая реакция), который можно перераспределить при помощи проводов, соединив точку высокого и низкого заряда (потенциала).

Остановимся на таком определении как общепринятом. Все остальные постоянные токи (не батарейки и аккумуляторы) являются производными от источника переменного тока. Например, на этой картинке синяя волнистая линия наш постоянный ток, как итог преобразования переменного.

Если бы мы подключили его непосредственно к источнику напряжения, он был бы сломан. Мы только что рассмотрели понижающую регуляцию напряженности, а также нашли решение. Только это решение имеет серьезную слабость: текущий. Если он изменяется, напряжение, которое падает через резистор, также изменяется. Но есть и решение для этого: делитель напряжения. Вот как это выглядит.

Почему высоковольтные кабели работают на 300 кВ?

Это вопрос, который задавал себе каждый раз или должен был ставить. Ответ следует из закона Ома и формулы для власти. Мощность определяет, сколько энергии требуется за время. Это означает, что для нашего источника питания 220 В используется ток. Теперь мы подключаем наше устройство с очень длинным силовым кабелем с этим разъемом. Мы включаем его, и это происходит: ничего. Здесь стоит упомянуть вышеупомянутую «внутреннюю реставрацию». Длинная линия подключения к источнику питания имеет такое высокое сопротивление, скажем так, что из-за падения напряжения на выходе для потребителя нет напряжения.

Обратите внимание на комментарии к картинке, «большое количество контуров и коллекторных пластин». Если преобразователь будет другим, картинка будет другой. Та же синяя линия ток почти постоянный, но пульсирующий, запомним это слово. Здесь, кстати, чистый постоянный ток - красная линия.

Поскольку мощность не изменяется из-за более высокого напряжения на линии соединения, это означает, что ток протекает там, поэтому это наше падение напряжения и, следовательно, предельное. И это также является причиной того, что высоковольтные кабели также ведут 100 кВ - 300 кВ. Из-за высокого напряжения и связанного с ним более низкого тока влияние иногда очень высоких внутренних сопротивлений кабелей сводится к минимуму. Общее: Определение - это количество, указывающее, сколько работы или энергии необходимо для перемещения носителя заряда с определенным электрическим зарядом в электрическом поле.

Взаимосвязь магнетизма и электричества

Теперь посмотрим, чем отличается переменный ток от постоянного тока, который зависит от материала. Самое главное - возникновение переменного тока не зависит от реакций в материале . Работая с гальваническим (постоянным током), быстро было установлено, что проводники притягиваются друг к другу как магниты. Следствием стало открытие, что магнитное поле при определённых условиях генерирует электрический ток. То есть, магнетизм и электричество оказались взаимосвязанным явлением с обратным преобразованием. Магнит мог дать ток в проводник, а проводник с током мог быть магнитом. На этой картинке моделирование опытов Фарадея, который, собственно говоря, и обнаружил это явление.

Это определение также легче представить. Для того, чтобы «ток» протекал в замкнутой системе, в качестве предпосылки требуется напряжение. Под этим электрическим напряжением понимается движущая сила, которая допускает или вызывает движение заряда. Резюме до настоящего времени: если ток или источник напряжения не загружается нагрузкой, ток не течет, и поэтому нет падения напряжения. Напряжение разомкнутой цепи можно измерить на контактах источника тока. Если к источнику тока или напряжения подключена нагрузка, то ток течет, а исходное напряжение разомкнутой цепи разделяется между сопротивлением нагрузки и внутренним сопротивлением источника напряжения.

Теперь аналогия для переменного тока. Магнитом у нас будет сила притяжения, а генератором тока - песочные часы с водой. На одной половине часов напишем «верх», на другой «низ». Переворачиваем наши часы и видим, как вода течёт «вниз», когда вся вода перетекла, переворачиваем ещё раз и вода у нас течёт «вверх». Притом, что ток у нас имеется в наличии, он меняет направление два раза за полный цикл. По науке это будет выглядеть так: частота тока зависит от частоты вращения генератора в магнитном поле. При определённых условиях мы получим чистую синусоиду, или просто переменный ток с разными амплитудами.

В этой главе теперь будут рассмотрены термины «источник напряжения» и источник тока. Источник напряжения: термины «источник тока» и «источник напряжения» не следует путать друг с другом. В принципе, источники тока и напряжения имеют противоположные свойства. Источник напряжения служит источником электрической энергии , который подает электрический ток в зависимости от подключенной нагрузки, но не может быть путано с источником тока. Важной характеристикой источника напряжения является то, что напряжение только низкое, или, в случае модели идеального источника напряжения, не зависит от принимаемого электрического тока.

Ещё раз! Это очень важно для понимания, чем отличается постоянный ток от переменного тока. В обеих аналогиях вода течёт «под уклон». Но в случае постоянного тока водохранилище опустеет рано, или поздно, а для тока переменного часы будут переливать воду очень долго, она в замкнутом объёме. Но при этом в обоих случаях вода течёт под уклон. Правда в случае переменного тока, она половину времени течёт под уклон, но вверх. Иначе говоря, направление движения переменного тока величина алгебраическая, то есть «+» и «-» непрерывно меняются местами, при неизменности направления движения тока. Постарайтесь обдумать и понять это отличие. Как модно говорить в сети: «Ты понял это, теперь ты знаешь всё».

Поскольку существенным свойством источника тока является то, что ток только низкий, или в модели идеального источника тока в кадре не зависит от электрического напряжения. Примерами источников напряжения являются батареи, солнечные элементы и генераторы и, в отличие от источников тока, не подают постоянный ток, а постоянное напряжение. Как правило, источники тока создаются с использованием источника напряжения и преобразования его в источник тока с помощью подходящей схемы.

В рамках термина «источник напряжения» все еще можно подразделить на идеальный и реальный источник напряжения. Идеальный источник напряжения - источник, который генерирует постоянное напряжение, не зависящее от тока и подключенных нагрузок. Реальные источники напряжения можно рассматривать как идеальный источник напряжения, который подает напряжение без нагрузки и зависит от внутреннего сопротивления, так что профиль напряжения на реальном источнике напряжения зависит от тока, который берется.

Чем обусловлено большое разнообразие токов

Если понимать в чем разница постоянного и переменного токов, возникает естественный вопрос - а зачем их так много, токов? Выбрали бы один ток как стандарт, и всё было бы одинаково.

Но, как говорится, «не все токи одинаково полезны», кстати, давайте подумаем, какой ток опаснее: постоянный или переменный, если мы примерно представили себе не природу тока, а скорее его особенности. Человек - это хорошо проводящий электричество коллодиум. Набор разных элементов в воде (мы на 70% из воды, если кто не в курсе). Если на такой коллодиум подать напряжение - ударить током, то частицы внутри нас начнут передавать заряд. Как и положено от точки высокого потенциала к точке с низким потенциалом. Опаснее всего стоять на земле, которая вообще является точкой с бесконечно нулевым потенциалом. Иначе говоря, мы передадим в землю весь ток, то есть разницу зарядов. Так вот при постоянном направлении движения заряда, процесс выравнивания потенциала в нашем организме происходит плавно. Мы словно песок пропускаем через себя воду. И можем безопасно «поглотить» много воды. При переменном токе картина немного другая - все наши частицы будет «дёргать» то туда то сюда. Песок не сможет спокойно пропускать воду, и весь будет взбаламучен. Поэтому ответ на вопрос, какой ток опаснее постоянный или переменный ответ однозначен - переменный. Для справки, опасная для жизни пороговая сила постоянного тока 300мА. Для переменного тока эти значения зависят от частоты и начинаются со значения 35мА. При токе в 50 герц 100мА. Согласитесь, разница в 3-10 раз сама по себе отвечает на вопрос: что опаснее? Но это не главный аргумент в выборе стандарта тока. Давайте упорядочим всё, что принимается во внимание при выборе вида тока:

Визуализация двух терминов: сначала снова выяснение тока и напряжения. Чем сильнее две стороны, тем сильнее сила, которая действует между ними и сильнее напряжение. Два источника тока и источника напряжения могут быть объяснены с помощью легкомысленного примера. Представляется горное озеро, представляющее собой напряжение в транспонированном смысле. Чем выше озеро, тем выше напряжение. Теперь вода из горного озера сворачивается в долину через трубы. Существует трубопровод от горного озера до долины.

Вода можно рассматривать как электроны. Если труба открыта в верхней части горного озера, вода течет вниз по трубе, которая является током в транспонированном смысле. Это означает, что чем больше воды в озере, тем больше воды будет «течь» вниз. Конечно, есть сопротивление на источнике напряжения или источнике тока. Это также можно представить. В представленном примере диаметр трубы будет сопротивлением. Чем более узкая трубка, тем меньше может течь вода. Узкая трубка обеспечивает устойчивость к потоку воды.

  • Доставка тока на большие расстояния . Постоянный ток будет потерян почти весь;
  • Преобразование в разнородных электрических цепях с неопределённым уровнем потребления. Для постоянного тока практически не решаемая задача;
  • Поддерживать постоянное напряжение для переменного тока на два порядка дешевле, чем для тока постоянного;
  • Преобразование электрической энергии в механическую силу гораздо дешевле в двигателях и механизмах переменного тока. Такие двигатели имеют свои недостатки и в ряде областей не могут заменить двигатели постоянного тока;
  • Для массового использования, таким образом, постоянный ток имеет одно преимущество - он безопаснее для человека.

Отсюда и разумный компромисс, который выбрало человечество. Не один какой-то ток, а вся совокупность доступных преобразований от генерации, доставки потребителю, распределения и использования. Перечислять все мы не будем, но считаем главным ответом на вопрос статьи, «чем отличается постоянный ток от переменного» одно слово - характеристиками. Наверное, это самый правильный ответ для любых бытовых целей. А для понимания стандартов, предлагаем рассмотреть основные характеристики этих токов.

Математически можно объединить два термина. Горное озеро: толщина трубы = расход воды. Постоянный ток, переменный ток, постоянное напряжение, переменное напряжение - электрические переменные кратко объясняются. С осциллографом. Батареи как источники прямого напряжения.

Передача электрической энергии линиями с переменным током. Диаграмма напряжения постоянного напряжения. Диаграмма напряжения переменного напряжения . Электрический ток ненадолго Электрический ток перемещает носители заряда, они могут иметь как отрицательный заряд, так и положительный. В металле электроны могут свободно двигаться. Они перемещаются, потому что их возбуждает электрическое поле . Мерой интенсивности тока является электрический ток. Он измеряется в «Ампере», сокращенно А.

Основные характеристики применяемых сегодня токов

Если для постоянного тока с момента открытия характеристики остались в целом без изменений, то с переменными токами всё обстоит куда сложнее. Посмотрите на эту картинку - модель движения тока в трёхфазной системе от генерации до потребления

Электрическое напряжение коротко объяснено. Если в какой-то момент у нас много положительных зарядов, их электрическое поле привлекательно для электронов, они хотят перейти на положительные заряды. Чем больше положительных зарядов, тем сильнее сила, которая управляет электронами. Для количества электрических зарядов определена мера, это «электрическое напряжение». Это просто указывает на разницу в электрических зарядах между двумя точками.

Чтобы ток мог течь, должно быть напряжение. Что такое Полярность? Электрическое напряжение имеет два полюса - положительный положительный полюс и отрицательный отрицательный полюс. На плюсовом полюсе наблюдается электронный дефицит, электроны хотят мигрировать на этот положительный полюс. На минусовом полюсе наблюдается избыток электронов, электроны отталкиваются от минус-полюса. Вместо полярности иногда используется полярность. Что такое источник напряжения? Источник напряжения представляет собой двухполюсную составляющую, между двумя полюсами которой существует электрическое напряжение.

С нашей точки зрения очень наглядная модель, на которой понятно как снять одну фазу, две или три. Заодно видно как тот попадает к потребителю.

В итоге мы имеем цепочку генерации, переменное и постоянное напряжение (токи) на этапе потребителя. Соответственно чем дальше от потребителя, тем выше токи и напряжение. Фактически в нашей розетке самый простой и слабый - переменный однофазный ток, 220В с фиксированной частотой в 50 Гц. Только повышение частоты способно при этом напряжении сделать ток высокочастотным. Простейший пример стоит у Вас на кухне. СВЧ печать преобразует простой ток в высокочастотный, который собственно и помогает готовить. Кстати ответим на вопрос о мощности СВЧ - это как раз сколько «обычного» тока она преобразует в токи высокой частоты.

Стоит помнить о том, что любое преобразование токов не обходится «даром». Чтобы получить переменный ток, надо чем-то вращать вал. Чтобы получить из него ток постоянный, придётся часть энергии рассеять как тепло. Даже токи передачи энергии придётся рассеять в виде тепла при доставке в квартиру при помощи трансформатора. То есть любое изменение параметров тока сопровождается потерями. И конечно потерями сопровождается доставка тока потребителю. Это, казалось бы, теоретическое знание, позволяет понять, откуда возникают наши переплаты за энергию, снимая половину вопросов, почему на счетчике 100 рублей, а в квитанции 115.

Вернёмся к токам. Мы упомянули вроде бы все, и даже знаем, чем отличается постоянный ток от переменного, поэтому давайте, напомним какие токи, вообще есть.

  • Постоянный ток , источником является физика химических реакций с изменением заряда, может быть получен преобразованием тока переменного. Разновидность - импульсный ток, который меняет свои параметры, в широком диапазоне, но не меняет направления движения.
  • Переменный ток . Может быть однофазным, двухфазным или трёхфазным. Стандартным или высокочастотным. Такая простая классификация вполне достаточна.

Заключение или каждому току свой прибор

На фото генератор тока на Саяно-Шушенской ГЭС. А на этом фото место его установки.

А это обычная лампочка.

Не правда ли разница масштабов поражает, хотя первое создано, в том числе и для работы второго? Если обдумать эту статью, то становится понятно, что чем ближе прибор к человеку, тем чаще в нём применяется постоянный ток. За исключением двигателей постоянного тока и промышленного применения это действительно стандарт, основанный именно на том, что какой ток опаснее постоянный или переменный мы выяснили. На этом же принципе основаны характеристики бытовых токов, так как переменный ток 220В 50Гц является компромиссом между опасностью и потерями. Цена компромисса - защитная автоматика: от предохранителя до УЗО. Отойдя от человека, мы попадаем в зону переходных характеристик, где и токи и напряжения выше, и где опасность для человека не принимается во внимание, а уделяется внимание технике безопасности - зона промышленного использования тока. Дальше всего от человека, даже в промышленности находится передача энергии и генерация. Простому смертному тут делать нечего - это зона профессионалов и специалистов, которые умеют управлять этой мощью. Но даже при бытовом использовании электричества, и конечно при работах с электрикой, понимание основ природы токов никогда не будет лишним.

Постоянный ток (direct current) это упорядоченное движение заряженных частиц в одном направлении. Другими словами
величины характеризующие электрический ток, такие как напряжение или сила тока, постоянны как по значению, так и по направлению.

В источнике постоянного тока, например в обычной пальчиковой батарейке, электроны движутся от минуса к плюсу. Но исторически сложилось так, что за техническое направление тока считается направление от плюса к минусу.

Для постоянного тока применимы все основные законы электротехники, такие как закон Ома и законы Кирхгофа.

История

Изначально постоянный ток назывался – гальваническим током, так как впервые был получен с помощью гальванической реакции. Затем, в конце девятнадцатого века, Томас Эдисон, предпринимал попытки организовать передачу постоянного тока по линиям электропередачи. При этом даже разыгралась так называемая “война токов” , в которой шел выбор в качестве основного тока между переменным и постоянным. К сожалению, постоянный ток “проиграл” эту “войну”, потому что в отличие от переменного тока, постоянный, несет большие потери в мощности при передаче на расстояния. Переменный ток легко трансформировать и благодаря этому передавать на огромные расстояния.

Источники постоянного тока

Источниками постоянного тока могут быть аккумуляторы, либо другие источники в которых ток появляется благодаря химической реакции (например, пальчиковая батарейка).

Также источниками постоянного тока может быть генератор постоянного тока, в котором ток вырабатывается благодаря
явлению электромагнитной индукции, а затем выпрямляется с помощью коллектора.

Постоянный ток может быть получен с помощью выпрямления переменного тока. Для этого существуют различные выпрямители и преобразователи.

Применение

Постоянный ток, достаточно широко применяется в электрических схемах и устройствах. К примеру, дома, большинство приборов, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный ток, для зарядки аккумулятора. Любое портативное устройство питается от источника постоянного тока.

В промышленности постоянный ток используется в машинах постоянного тока, например в двигателях, или генераторах. В некоторых странах существуют высоковольтные линии электропередачи постоянного тока.

Постоянный ток также нашел свое применение и в медицине, например в электрофорезе – процедуре лечения с помощью электрического тока.

В железнодорожном транспорте, кроме переменного, используется и постоянный ток. Это связано с тем, что тяговые двигатели, которые имеют более жесткие механические характеристики , чем асинхронные, являются двигателями постоянного тока.

Влияние на организм человека

Постоянный ток в отличие от переменного является более безопасным для человека. Например, смертельным током для человека является 300 мА если это ток постоянный, а если переменный с частотой 50 Гц, то 50-100 мА.

В данной расскажем что такое переменный электрический ток и трехфазный переменный переменный ток.

Понятие переменного электрического тока даётся в учебнике физики общеобразовательного учебного заведения — школы. — ток имеющий форму гармонического синусоидального сигнала, основными характеристиками которого являются действующее напряжение и частота, с течением времени изменяется по направлению и величине.

Частота – это количество полных изменений полярности переменного электрического тока за одну секунду. Это означает, что ток, в обычной бытовой розетке частотой 50 Герц за одну секунду меняет своё направление с положительного значения на отрицательное и обратно ровно пятьдесят раз. Одно полное изменение направления (полярности) электрического тока с положительного значения на отрицательное и снова на положительное называют — периодом колебания электрического тока . В течение периода Т переменный электрический ток меняет своё направление дважды.

Для визуального наблюдения синусоидальной формы переменного тока обычно используют . Для исключения поражения электрическим током и защиты осциллографа от сетевого напряжения по входу, используют разделительные трансформаторы. Для измерения периода нет разницы, по каким равнозначным (равноамплитудным) точкам его измерять. Можно по максимальным положительным, или отрицательным вершинам, а можно и по нулевому значению. Это поясняется на рисунке.

Из учебника физики мы знаем, что переменный электрический ток вырабатывается с помощью электрической машины – генератора. Простейшая модель генератора это магнитная рамка, вращающаяся в магнитном поле постоянного магнита.

Представим себе прямоугольную проволочную рамку с несколькими витками, равномерно вращающуюся в однородном магнитном поле. Возникающая в этой рамке э.д.с. индукции меняется по синусоидальному закону. Период колебания Т переменного электрического тока – это один полный оборот магнитной рамки вокруг своей оси.

магнитная рамка

Одними из важных характеристик электрического тока являются две величины переменного электрического тока – максимальное значение и среднее значение.

Максимальное значение напряжения электрического тока Umax — это величина напряжения, соответствующая максимальному значению синусоиды.

Среднее значение напряжения электрического тока Uср — это величина напряжения, равная значению 0,636 от максимального. Математически это выглядит так:

U ср = 2 * U max / π = 0,636 U max

Синусоиду максимального напряжения можно проконтролировать на экране осциллографа. Понять, что такое среднее значение переменного электрического напряжения можно проведя эксперимент по рисунку и описанию ниже.

Используя осциллограф, подключите к его входу синусоидальное напряжение. Ручкой вертикального смещения развёртки переместите «ноль» развёртки на самую нижнюю линию шкалы экрана осциллографа. Растяните и сместите горизонтальную развёртку так, чтобы одна полуволна синусоидального напряжения поместилась в десять (пять) клеток экрана осциллографа. Ручкой вертикальной развёртки (усилением) растяните развёртку так, чтобы максимальная амплитуда полуволны поместилась ровно в десять (пять) клеток экрана осциллографа. Определите амплитуду синусоиды на десяти участках. Суммируйте все десять значений и поделите на десять – найдите его «средний балл». В результате Вы получите значение напряжения, приблизительно равное 6,36 от его максимального значения — 10.

Измерительные приборы – вольтметры, цешки, мультиметры для измерения переменного напряжения имеют в своей схеме выпрямитель и сглаживающий конденсатор. Эта цепочка «округляет» множитель разницы максимального и измеряемого напряжения до числа 0,7. Поэтому, если Вы будете наблюдать на экране осциллографа синусоиду напряжения амплитудой 10 вольт, то вольтметр (цешка, мультиметр) покажет не 10, а около 7 вольт. Вы думаете что в Вашей домашней розетке – 220 вольт? Так и есть, но не совсем так! 220 вольт – это среднее значение напряжения бытовой розетки, усреднённое измерительным прибором — вольтметром. Максимальное же напряжение следует из формулы:

U max = U изм / 0,7 = 220 / 0,7 = 314,3 вольт

Именно поэтому, когда Вас «бъёт» током от электрической розетки 220 вольт, знайте, что это Ваша иллюзия. На самом деле, Вас трясёт напряжение около 315 вольт.

Трехфазный ток

Наряду с простым синусоидальным переменным током в технике широко используется так называемый трехфазный переменный ток . Мало того, трёхфазный электрический ток — это основной вид энергии используемый во всём мире. Трёхфазный ток приобрёл популярность по причине менее затратной передачи энергии на большие расстояния. Если для обычного (однофазного) электрического тока требуется два провода, то для трёхфазного тока, у которого энергия в три раза больше, требуется всего три провода. Физический смысл Вы узнаете в этой статье позже.

Представьте, если вокруг общей оси вращается не одна, а три одинаковые рамки, плоскости которых повернуты друг относительно друга на 120 градусов. Тогда возникающие в них синусоидальные э.д.с. также будут сдвинуты по фазе на 120 градусов (см. на рис).

Такие три согласованных переменных тока называют трехфазным током. Упрощённое расположение проволочных обмоток в генераторе трёхфазного тока иллюстрируется на рисунке.

Подключение обмоток генератора по трём независимым линиям показано на рисунке ниже.

Такое подключение шестью проводами довольно громоздко. Так как для явлений в электрических цепях важны только разности потенциалов, то один проводник может использоваться сразу для двух фаз, без снижения нагрузочной способности по каждой из фаз. Другими словами, в случае подключения обмоток генератора по схеме «звезда» с использованием «нуля», передача энергии от трёх источников производится по четырём проводам (см. рис.), в которых один является общим – нулевым проводом.

По трём проводам может передаваться энергия сразу от трёх (фактически независимых) источников электрического тока соединённых «треугольником».

В промышленных генераторах и преобразующих трансформаторах «треугольником» обычно подключается межфазное напряжение 220 вольт. При этом «нулевой» провод отсутствует.

«Звезда» применяется для передачи напряжения сети с использованием «нуля». При этом на фазе относительно «нуля» действует напряжение 220 вольт. Межфазное напряжение при этом равно 380 вольт.

Частым явлением во времена «нагло ворующей демократии» было сгорание бытовой аппаратуры в квартирах добропорядочных граждан, когда из-за слабой проводки сгорал общий «ноль», тогда в зависимости от того, какое количество бытовых приборов включено в квартирах, горели телевизоры и холодильники у того, кто их меньше всего включал. Вызвано это явлением «перекоса фаз», которое возникало при обрыве нуля. В розетку добропорядочных граждан вместо 220 вольт устремлялось межфазное напряжение 380 вольт. До настоящего времени во многих коммуналках и сооружениях напоминающих жильё наших российских городов и весей это явление до конца не искоренилось.

Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?

Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди - получается ток.

Генератор - как насос для воды, а провод - как шланг. Генератор-насос качает электроны-воду через провода-шланги.

Переменный ток - это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает - это и есть смена направлений движения. А 220 вольт - это максимально возможный «напор», с которым движутся электроны в этой сети.

В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.

Постоянный ток - это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.

Переменный ток – род тока, направление протекания которого непрерывно меняется. Становится возможным, благодаря наличию разницы потенциалов, подчиняющейся закону. В повседневном понимании форма переменного тока напоминает синусоиду. Постоянный способен изменяться по амплитуде, направление прежнее. В противном случае получаем переменный ток. Трактовка радиотехников противоположна школьной. Ученикам говорят — постоянный ток одной амплитуды.

Как образуется переменный ток

Начало переменному току положил Майкл Фарадей, читатели подробнее узнают ниже по тексту. Показано: электрическое и магнитное поля связаны. Ток становится следствием взаимодействия. Современные генераторы работают за счет изменения величины магнитного потока через площадь, охватываемую контуром медной проволоки. Проводник может быть любым. Медь выбрана из критериев максимальной пригодности при минимальной стоимости.

Статический заряд преимущественно образуется трением (не единственный путь), переменный ток возникает в результате незаметных глазу процессов. Величина пропорциональна скорости изменения магнитного потока через площадь, охваченную контуром.

История открытия переменного тока

Впервые переменным токам стали уделять внимание ввиду коммерческой ценности после появления на свет изобретений, созданных Николой Тесла. Материальный конфликт с Эдисоном отметил сильным отпечатком судьбы обоих. Когда американский предприниматель забрал назад обещания перед Николой Тесла, потерял немалую выгоду. Выдающемуся ученому не понравилось вольное обращение, серб выдумал двигатель переменного тока промышленного типа (изобретение сделал намного раньше). Предприятия пользовались исключительно постоянным. Эдисон продвигал указанный вид.

Тесла впервые показал: переменным напряжением можно достичь гораздо больших результатов. В особенности, когда энергию приходится передавать на большие расстояния. Использование трансформаторов без труда позволяет повысить напряжение, резко снижая потери на активном сопротивлении. Приемная сторона параметры вновь возвращает к исходным. Неплохо сэкономите на толщине проводов.

Сегодня показано: передача постоянного тока экономически выгоднее. Тесла изменил ход истории. Придумай ученый преобразователи постоянного тока, мир выглядел бы иначе.

Начало активному использованию переменного тока положил Никола Тесла, создав двухфазный двигатель. Опыты передачи энергии на значительные расстояния расставили факты по своим местам: неудобно переносить производство в район Ниагарского водопада, гораздо проще проложить линию до места назначения.

Школьный вариант трактовки переменного и постоянного тока

Переменный ток демонстрирует ряд свойств, отличающих явление от постоянного. Вначале обратимся к истории открытия явления. Родоначальником переменного тока в обиходе человечества считают Отто фон Герике. Первым заметил: заряды природныедвух знаков. Ток способен протекать в разном направлении. Касательно Тесла, инженер больше интересовался практической частью, авторские лекции упоминают двух экспериментаторов британского происхождения:

  1. Вильям Споттисвуд лишен странички русскоязычной Википедии, национальная часть — замалчивает работы с переменным током. Подобно Георгу Ому, ученый — талантливый математик, остается сожалеть, что с трудом можно узнать, чем именно занимался муж науки.
  2. Джеймс Эдвард Генри Гордон намного ближе практической части вопроса применения электричества. Много экспериментировал с генераторами, разработал прибор собственной конструкции мощностью 350 кВт. Много внимания уделял освещению, снабжению энергией заводов, фабрик.

Считается, первые генераторы переменного тока созданы в 30-е годы XIX века. Майкл Фарадей экспериментально исследовал магнитные поля. Опыты вызывали ревность сэра Хемфри Дэви, критиковавшего ученика за плагиат. Сложно потомкам выяснить правоту, факт остается фактом: переменный ток полвека просуществовал невостребованным. В первой половине XIX-го века выдуман электрический двигатель (авторство Майкла Фарадея). Работал, питаемый постоянным током.

Никола Тесла впервые догадался реализовать теорию Араго о вращающемся магнитном поле. Понадобились две фазы переменного тока (сдвиг 90 градусов). Попутно Тесла отметил: возможны более сложные конфигурации (текст патента). Позднее изобретатель трехфазного двигателя, Доливо-Добровольский, тщетно силился запатентовать детище плодотворного ума.

Продолжительное время переменный ток оставался невостребованным. Эдисон противился внедрению явления в обиход. Промышленник боялся крупных финансовых потерь.

Никола Тесла изучал электрические машины

Почему переменный ток используется чаще постоянного

Ученые доказали недавно: передавать постоянный ток выгоднее. Снижаются потери излучения линии. Никола Тесла перевернул ход развития истории, правда восторжествовала.

Никола Тесла: вопросы безопасности и эффективности

Никола Тесла посетил конкурирующую с эдисоновской компанию, продвигая новое явление. Увлекся, часто ставил эксперименты на себе. В противовес сэру Хемфри Дэви, который укоротил жизнь, вдыхая различные газы, Тесла добился немалого успеха: покорил рубеж 86 лет. Ученый обнаружил: изменение направления течения тока со скоростью выше 700 раз в секунду делает процесс безопасным для человека.

Во время лекций Тесла брал руками лампочку с платиновой нитью накала, демонстрировал свечение прибора, пропуская через собственное тело токи высокой частоты. Утверждал: явление безвредно, даже приносит пользу здоровью. Ток, протекая по поверхности кожи, одновременно очищает. Тесла говорил, экспериментаторы прежних дней (смотрите выше) пропускали удивительные явления по указанным причинам:

  • Несовершенные генераторы механического типа. Вращающееся поле использовалось в прямом смысле: при помощи двигателя раскручивался ротор. Подобный принцип бессилен выдать токи высокой частоты. Сегодня проблематично, невзирая на нынешний уровень развития технологии.
  • В простейшем случае применялись ручные размыкатели. Вовсе нечего говорить о высоких частотах.

Сам Тесла использовал явление заряда и разряда конденсатора. Подразумеваем RC-цепочку. Будучи заряжен до определённого уровня, конденсатор начинает разряжаться через сопротивление. Параметров элементов определяют скорость процесса, протекающего согласно экспоненциальному закону. Тесла лишен возможности использовать методы управления контуров полупроводниковыми ключами. Термионные диоды были известны. Рискнем предположить, Тесла мог использовать изделия, имитируя стабилитроны, оперируя с обратимым пробоем.

Однако вопросы безопасности лишены почетного первого места. Частоту 60 Гц (общепринятая США) предложил Никола Тесла, как оптимальную для функционирования двигателей собственной конструкции. Сильно отличается от безопасного диапазона. Проще сконструировать генератор. Переменный ток в обоих смыслах выигрывает у постоянного.

Через эфир

Поныне безуспешно ведутся споры, касаемо первооткрывателя радио. Прохождение волны через эфир обнаружил Герц, описав законы движения, показав, сродство оптическим. Сегодня известно: переменное поле бороздит пространстве. Явление Попов (1895 год) использовал, передавая первое Земное сообщение «Генрих Герц».

Видим, ученые мужи дружны между собой. Сколько уважения демонстрирует первое сообщение. Дата остается спорной, каждое государство первенство хочет присвоить безраздельно. Переменный ток создает поле, распространяющееся через эфир.

Сегодня общеизвестны диапазоны вещания, окна, стены атмосферы, различных сред (вода, газы). Важное место отводится частоте. Установлено, каждый сигнал можно представить суммой элементарных колебаний-синусоид (согласно теоремам Фурье). Спектральный анализ оперирует простейшими гармониками. Суммарный эффект рассматривается, как равнодействующая элементарных составляющих. Произвольный сигнал раскладывается преобразованием Фурье.

Окна атмосферы определяются аналогичным образом. Увидим частоты, проходящие сквозь толщу хорошо и плохо. Не всегда последнее оказывается негативным эффектом. Микроволновые печи используют частоты 2,4 ГГц, ударно поглощаемые парами воды. Для связи волны бесполезны, зато хороши кулинарными способностями!

Новичков тревожит вопрос распространения волны через эфир. Обсудим подробнее неразрешенную поныне учеными загадку.

Вибратор Герца, эфир, электромагнитная волна

Взаимосвязь электрического, магнитного полей впервые продемонстрировал в 1821 году Майкл Фарадей. Чуть позднее показали: конденсатор пригоден для создания колебаний. Нельзя сказать, чтобы связь двух событий немедленно осознали. Феликс Савари разряжал лейденскую банку через дроссель, сердечником которому служила стальная игла.

Неизвестно доподлинно, чего добивался астроном, результат оказался любопытным. Иногда игла оказывалась намагниченной в одном направлении, иногда — противоположном. Ток генератора одного знака. Ученый правильно сделал вывод: затухающий колебательный процесс. Толком не зная индуктивных, емкостных реактивных сопротивлений.

Теорию процесс подвели позже. Опыты повторены Джозефом Генри, Вильямом Томпсоном, определившим резонансную частоту: где процесс продолжался максимальный период времени. Явление позволило количественно описать зависимости характеристик цепи от элементов составляющих (индуктивность и емкость). В 1861 году Максвелл вывел знаменитые уравнения, одно следствие особенно важно: «Переменное электрическое поле порождает магнитное и наоборот».

Возникает волна, векторы индукции взаимно перпендикулярны. Пространственно повторяют форму породившего процесса. Волна бороздит эфир. Явление использовал Генрих Герц, развернув обкладки конденсатора в пространстве, плоскости стали излучателями. Попов догадался закладывать информацию в электромагнитную волну (модулировать), что используется сегодня повсеместно. Причем в эфире и внутри полупроводниковой техники.

Где используется переменный ток

Переменный ток лежит в основе принципа действия большинства известных сегодня приборов. Проще сказать, где применяется постоянный, читатели сделают выводы:

  1. Постоянный ток применяется в аккумуляторах. Переменный порождает движение – не может храниться современными устройствами. Потом в приборе электричество преобразуется в нужную форму.
  2. КПД коллекторных двигателей постоянного тока выше. По этой причине выгодно применять указанные разновидности.
  3. При помощи постоянного тока действуют магниты. К примеру, домофонов.
  4. Постоянное напряжение применяется электроникой. Потребляемый ток варьируется в некоторых пределах. В промышленности носит название постоянного.
  5. Постоянное напряжение применяется кинескопами для создания потенциала, увеличения эмиссии катода. Случаи назовем аналогами блоков питания полупроводниковой техники, хотя иногда различие значительно.

В остальных случаях переменный ток выказывает весомое преимущество. Трансформаторы — неотъемлемая составляющая техники. Даже в сварке далеко не всегда господствует постоянный ток, но в любом современном оборудовании этого типа имеется инвертор. Так гораздо проще и удобнее получить достойные технические характеристики.

Хотя исторически первыми получены были статические заряды. Вспомним шерсть и янтарь, с которыми работал Фалес Милетский.

И . Прежде чем подробно разбирать эти термины следует вспомнить, что понятие электрического тока заключается в упорядоченном движении частиц, имеющих электрические заряды. Если электроны постоянно осуществляют движение в одном направлении, то ток носит название постоянного. Но, когда электроны в один момент времени двигаются в одном направлении, а в другой момент осуществляется движение в другом направлении, то это является упорядоченным движением заряженных частиц, двигающихся без остановки. этот ток называют переменным. Существенным различием между ними считают то, что у постоянного значения «+» и «-» постоянно находятся на одном определенном месте.

Что такое постоянное напряжение

В качестве примера постоянного напряжения служит обычная батарейка. На корпусе любой батарейки есть обозначения «+» и «-». Это говорит о том, что при постоянном токе эти значения имеют постоянное местоположение. У переменного наоборот, значения «+» и «-» изменяются через определенные короткие промежутки времени. Поэтому обозначение постоянного тока применяется в виде одной прямой линии, а обозначение переменного - в виде одной волнистой линии.

Отличие постоянного тока от переменного

Большинство устройств, использующих постоянный ток, не позволяют при подключении источника питания путать контакты, поскольку в таком случае прибор может просто выйти из строя. При переменном этого не произойдет. Если вставить вилку в розетку любой стороной, то прибор все равно будет работать. Кроме того, существует такое понятие, как частота переменного тока. Она показывает, сколько раз в течение секунду меняются местами «минус» с «плюсом». Например, частота в 50 герц означает, изменение полярности напряжения за секунду 50 раз.

На представленных графиках видно изменение напряжения в различные временные моменты. На графике слева, для примера показано напряжение на контактах лампочки карманного фонарика. На отрезке времени с «0» до точки «а» напряжение вообще отсутствует, так как фонарик выключен. В точке времени «а» возникает напряжение U1, которое не меняется в промежутке времени «а» - «б», когда фонарик включен. При выключении фонарика в момент времени «б» напряжение снова становится равным нулю.

На графике переменного напряжения можно наглядно увидеть, что напряжение в различных точках, то поднимается до максимума, то становится равным нулю, то падает до минимума. Это движение происходит равномерно, через одинаковые промежутки времени и повторяется до тех пор, пока не отключат свет.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!