Простая схема радиоприемника: описание. Старые радиоприемники

«Радиоволны» передают музыку, разговоры, фотографии и данные незримо через воздух, часто более чем миллионы миль - это происходит каждый день тысячами различных способов! Даже при том, что радиоволны невидимы и абсолютно необнаружимы людьми, они полностью изменили общество. Говорим ли мы о сотовом телефоне, радионяне, беспроводном телефоне или о ком-либо из тысяч других беспроводных технологий, все они используют радиоволны для осуществления коммуникации.
Вот всего несколько повседневных технологий, которые значительным образом зависят от радиоволн:

  • Радиопередачи AM и FM
  • Беспроводные телефоны
  • Беспроводные сети
  • Радиоуправляемые игрушки
  • Телевизионные передачи
  • Сотовые телефоны
  • GPS-приёмники
  • Любительские радио
  • Спутниковая связь
  • Полицейское радио
  • Беспроводные часы
Данный список можно продолжать и продолжать… Даже такие вещи, как радиолокационные и микроволновые печи зависят от радиоволн. Также такие вещи, как связь и навигационные спутники не функционировали бы без радиоволн, равно как и современная авиация - самолёт сегодня зависит от десятка различных систем радиосвязи. Нынешняя тенденция к беспроводному доступу в Интернет использует радио, и это означает, что в будущем нас ждёт намного больше удобства.

Шутка-минутка


Самое смешное, что, по своей сути, радио является невероятно простой технологией. С помощью всего лишь нескольких электронных компонентов, которые стоят не более одного или двух долларов, вы можете создавать простые радиопередатчики и приёмники. История того, как что-то настолько простое стало основной технологией современного мира является захватывающей. В сегодняшней статье мы рассмотрим технологию под названием «радио», так что вы сможете полностью понять, как невидимые радиоволны делают столько много вещей, и нашу жизнь проще.

Простейшее радио

Радио может быть невероятно простым, и на рубеже веков эта простота сделала раннее экспериментирование возможным для примерно любого человека. Как просто получить радио? Один из примеров описывается далее:

  • Возьмите свежую 9-вольтовую батарейку и монету
  • Найдите AM-радио и настройте его на область дисков, где будет слышна статика
  • Теперь держите батарейку вблизи антенны и быстро нажмите на два контакта аккумулятора монетой (так, чтобы вы соединили их вместе на мгновение)
  • Вы услышите потрескивание в радио, которое вызвано связью и разъединением монеты
Да, простая батарейка и не менее простая монета являются радиопередатчиком. Данная комбинация не передаёт ничего полезного (только статика), и передача не будет производиться на далёкие расстояния (всего несколько дюймов, потому что нет оптимизации для расстояния). Но если вы используете статику, чтобы вытряхнуть Азбуку Морзе, вы можете фактически сообщить о чём-то не более чем на расстояние нескольких дюймов с этим непродуманным устройством.

Более сложное радио

Если вы хотите получить немного более сложное радио, используйте металлический файл и два куска проволоки. Соедините ручку файла к одному контакту 9-вольтовой батарейки, затем соедините второй кусок проволоки ко второму контакту и запустите конструкцию проводя вверх и вниз по файлу. Если вы сделаете это в темноте, вы сможете увидеть, как очень маленькие 9-вольтовые искры бегут вдоль файла, поскольку наконечник проволоки производит соединение и разъединение. Держите файл около AM-радио и тогда услышите много статики.

В первые дни радиопередатчики были названы искровыми катушками, и, кроме того, они создавали непрерывный поток искр при гораздо более высоких напряжениях (например, 20000 вольт). Высокое напряжение, соответственно, поспособствовало созданию больших искр, таких, какие вы видите в свече зажигания, например. Сегодня такой передатчик, как этот, незаконен, потому что спамит весь спектр радиочастот, но в первые дни он работал отлично и был очень распространён потому, что было не много людей, использующих радиоволны.

Основы радио: части

Как вы могли заметить из предыдущего раздела, создавать статику невероятно легко. Однако все радиостанции сегодня используют непрерывные волны синуса для передачи информации (аудио, видео, различные данные). Причина, по которой мы используемые непрерывные волны синуса сегодня - потому что есть много различных людей и устройств, которые в то же время хотят использовать радиоволны. Если бы у вас был какой-либо способ видеть их, то вы нашли бы, что есть буквально тысячи различных радиоволн (в форме волн синуса) вокруг вас прямо сейчас - телепередачи, радиопередачи AM и FM, полицейские и пожарные радио, спутниковые телевизионные передачи, разговоры сотовых телефонов, GPS-сигналы и так далее. Также удивительно, как много применений существует для радиоволн сегодня. Каждый отличающийся радиосигнал использует различную частоту волны синуса, и именно так они все разделены.

У любой радио-установки есть две части: передатчик (трансмиттер) и приёмник (ресивер). Передатчик перехватывает своего рода сообщение (это может быть звук чьего-либо голоса, изображение экрана телевизора, данные для радиомодема или любое другое что-то), кодирует его на волну синуса и передаёт с радиоволнами. Приёмник же, понятное дело, принимает радиоволны и расшифровывает сообщение от волны синуса, которую оно получает. И трансмиттер и ресивер используют антенны, чтобы излучить и захватить радиосигнал.

Основы радио: реальные примеры

Радионяня примерно так же проста, как и получаемая технология радиосвязи. Существует передатчик, который «сидит» в комнате ребёнка и приёмник, что родители используют, чтобы слушать своё чадо. Вот некоторые из важных характеристик типичной радионяни:

  • Модуляция : Амплитудная Модуляция (Amplitude Modulation, AM)
  • Диапазон частот : 49 МГц
  • Количество частот : 1 или 2
  • : 0.25 Вт


Типичная радионяня с передатчиком слева и приёмником справа. Передатчик находится, непосредственно, в комнате ребёнка и служит некой мини-радиостанцией. Родители же берут с собой приёмник и с помощью него слушают деяния ребёнка. Дальность связи ограничивается до 200 футов (61 метр)


Не волнуйтесь, если такие термины, как «модуляция» и «частота» не имеют смысла для вас сейчас - мы доберёмся до них через некоторое время и я объясню, что они значат.


Мобильный телефон содержит в себе как приёмник, так и передатчик, и оба работают одновременно на разных частотах. Сотовый телефон взаимодействует с сотовой вышкой и способен передавать сигналы на расстояние 2 или 3 мили (3-5 километров)


Сотовый телефон также радио и является гораздо более сложным устройством. Сотовый телефон содержит как передатчик, так и приёмник, и вы можете использовать одновременно их оба - так вы будете использовать сотни различных частот и сможете автоматически переключаться между ними. Вот некоторые из важных характеристик типичного аналогового сотового телефона:
  • Модуляция : Частотная Модуляция (Frequency Modulation, FM)
  • Диапазон частот : 800 МГц
  • Количество частот : 1.664
  • Мощность передатчика (трансмиттера) : 3 Вт

Простые передатчики (трансмиттеры)

Вы можете получить представление о том, как работает радиопередатчик, начиная с батарейки и куска проволоки. Как известно, батарея посылает электричество (поток электронов) через провод при подключении его между двумя контактами. Движущиеся электроны создают магнитное поле, окружающее провод, и поле достаточно сильное, чтобы повлиять на компас.

Давайте предположим, что вы берёте ещё один провод и помещаете его параллельно провода аккумулятора на несколько дюймов (5 сантиметров). При подключении очень чувствительного вольтметра к проводу произойдёт следующее: каждый раз, когда вы подключаете или отключаете первый провод от батареи, вы ощутите очень маленькое напряжение и ток во втором проводе; любое изменение магнитного поля может вызвать электрическое поле в проводнике - это основной принцип, лежащий в любом электрическом генераторе. Итак:

  • Батарея создаёт поток электронов в первом проводе
  • Подвижные электроны создают магнитное поле вокруг провода
  • Магнитное поле простирается до второго провода
  • Электроны начинают течь во втором проводе каждый раз, когда магнитное поле в первом проводе изменяется

Одна важная вещь, заметьте, состоит в том, что поток электронов во втором проводе только тогда, когда вы соединяете или разъединяете батарею. Магнитное поле не вызывает электроны течь в проводе, если магнитное поле не меняется. Подключение и отключение батарейки меняет магнитное поле (подключение аккумулятора к проводу создаёт магнитное поле, в то время как отключение разрушает его). Таким образом протекает поток электронов во втором проводе в те два момента.

Передача информации

Если у вас есть волна синуса и передатчик, который передаёт волну синуса в космос с антенной, у вас есть радиостанция. Единственная проблема заключается в том, что волна синуса не содержит никакой информации. Вы должны смодулировать волну в некотором роде, чтобы закодировать информацию на ней. Есть три распространённых способа смодулировать волну синуса:

Импульсная Модуляция - в PM вы просто включаете волну синуса и отключаете. Это простой способ отправить код Азбуки Морзе. PM не настолько распространана, но один хороший пример её - система радиосвязи, которая посылает сигналы в радиоуправляемые часы в Соединённых Штатах Америки. Один передатчик PM в состоянии покрыть все Соединённые Штаты Америки!

Амплитудная Модуляция - обе радиостанции AM и часть телевизионного сигнала сигнализируют амплитудную модуляцию для кодирования информации. В амплитудной модуляции амплитуда волны синуса (её напряжение от пика к пику) изменяется. Так, например, волна синуса, произведённая голосом человека, накладывается на волну синуса передатчика, чтобы изменить её амплитуду.

Частотная Модуляция - радионстанции FM и сотни других беспроводных технологий (включая звуковую часть телевизионного сигнала, беспроводные телефоны, сотовые телефоны и так далее) используют частотную модуляцию. Преимущество FM заключается в том, что она в значительной степени невосприимчива к статике. В FM изменение частоты волны синуса передатчика очень слабо основывается на информационном сигнале. После того, как вы смодулировали волну синуса с информацией, вы можете передать её!

Частота
Одна особенность волны синуса - своя частота. Частота волны синуса - количество раз, сколько колеблется она вверх и вниз в секунду. Когда вы слушаете радиопередачу AM, ваше радио настраивается на волну синуса с частотой приблизительно 1000000 циклов в секунду (циклы в секунду известны также как герцы). Например, 680 на дайле AM - это 680000 циклов в секунду. Радиосигналы FM работают в диапазоне 100000000 герц. Таким образом, 101.5 в дайле FM будет значится как 101500000 циклов в секунду.

Приём сигнала AM

Вот пример реального мира. При настройке вашего автомобильного AM-радио на станции, например, 680 на циферблате AM - значит, что волна синуса передатчика передаёт 680000 герц (волна синуса повторяет 680000 раз в секунду). Голос диджеев модулируется на этой несущей волне путём изменения амплитуды волны синуса передатчика. Усилитель усиливает сигнал на что-то вроде 50000 Вт для большой AM-станции. Тогда антенна передаёт радиоволны в космос.

Так как же AM-радио вашего автомобиля - приёмник - получает 680000-герцевый сигнал, который послан передатчиком и извлекает информацию (голос диджея) из него? Далее я перечислю вам шаги данного процесса:

  • Если вы не сидите прямо рядом с передатчиком, ваш радиоприёмник нуждается в антенне, чтобы помочь подобрать радиоволны передатчика из воздуха. AM-антенна представляет собой просто провод или металлическую палку, которая увеличивает количество металла, с которым могут взаимодействовать волны передатчика.
  • Также ваш радиоприёмник нуждается в тюнере. Антенна будет получать тысячи волн синуса. Работа тюнера заключается в отделении одной волны синуса от тысяч различных радиосигналов, которые получает антенна. В этом случае приёмник настроен на получение сигнала 680000 герц. Тюнеры работают используя принцип, называющийся резонанс, то есть тюнеры резонируют и усиливают одну особую частоту, в то время как все другие частоты игнорируются в воздухе. Резонатор, к слову, легко создать с помощью конденсатора и катушки индуктивности.
  • Тюнер заставляет радио получать всего одну частоту волны синуса (в нашем случае 680000 герц). Теперь радио должно извлечь голос диджея из этой волны синуса - это делается посредством одной из частей радио под названием детектор или демодулятор. В случае с AM-радио, детектор выполнен так, что имеет электронные компоненты, называемые диодами. Диод позволяет току течь в одном направлении и только через него.
  • Радио затем усиливает обрезанный сигнал и посылает его спикерам (или наушникам). Усилитель выполнен из одного или нескольких транзисторов (чем больше транзисторов, тем больше усиление и поэтому большая мощность приходится на динамики).
То, что вы слышите исходящее из динамиков - голос диджеев (привет, кэп). В FM-радио детектор отличается, но всё остальное то же самое. В FM-радио детектор изменяет частоту в звуке, но антенна, тюнер и усилитель - в основном то же самое.

Основы антенны

Вы, наверное, заметили, что почти каждое радио, будь то мобильный телефон, радио в автомобиле и многое другое, имеет антенну. Антенны бывают всех форм и размеров, в зависимости от частоты, которую антенна пытается получать. Радиопередатчики также используют чрезвычайно высокие башни-антенны для передачи их сигналов.

Идея антенны в радиопередатчике подразумевает под собой запуск радиоволны в космос. В приёмнике идея состоит в том, чтобы взять как можно больше данных передатчика и поставлять её тюнеру. Для спутников, которые находятся от нас в миллионах миль, NASA использует огромные спутниковые антенны до 200 футов (60 метров) в диаметре - только представьте себе подобную картинку маслом.

Размер оптимальной радиоантенны связан с частотой сигнала, который антенна пытается передавать или принимать. Причина этой взаимосвязи имеет отношение к скорости света, в результате чего на далёкие расстояния могут отправляться электроны. Скорость света составляет 186000 миль в секунду (300000 километров в секунду).

Антенны: реальные примеры

Давайте предположим, что вы пытаетесь построить радиовышку для радиостанции 680 AM. Она передаёт волну синуса с частотой 680000 герц. В одном цикле волны синуса передатчик будет перемещать электроны в антенну в одном направлении, переключиться и задержит их, снова переключиться и выставит их, а потом переключиться ещё раз и вернёт их обратно. Другими словами, электроны будут изменять направление четыре раза в течение одного цикла волны синуса. Если передатчик работает на 680000 герц, это означает, что каждый цикл завершается в (1/680000) 0.00000147 секунды. Одна четверть этого составляет 0.0000003675 секунды. Со скоростью света электроны могут пролететь 0.0684 мили (0.11 километра) через 0.0000003675 секунды. Это значит, что оптимальный размер антенны для передатчика на 680000 герц равен 361 футу (110 метрам). Таким образом, радиостанции AM нуждаются в очень высоких башнях. Для мобильного телефона, работающего на частоте 900000000 (900 МГц), с другой стороны, оптимальный размер антенны составляет около 8.3 сантиметра или 3 дюймов - именно поэтому мобильные телефоны могут иметь такие короткие антенны.

Вы могли бы задаться вопросом, почему когда радиопередатчик передаёт что-то, радиоволны хотят размножиться через пространство далеко от антенны со скоростью света. Почему радиоволны могут преодолевать миллионы миль? Оказывается, что в пространстве магнитное поле, создаваемое антенной, индуцирует электрическое поле в пространстве. Это электрическое поле, в свою очередь, вызывает ещё магнитное поле в пространстве, которое индуцирует другое магнитное поле, которое индуцирует другое магнитное поле, и так далее. Эти электрические и магнитные поля (электромагнитные поля) вызывают друг друга в пространстве со скоростью света, путешествуя таким образом далеко от антенны. Вот и всё на сегодня. Надеюсь, что статья была очень интересной, познавательной, полезной и вы узнали много нового о повседневной технологии.

4. Принцип работы передатчика

Сигнал с датчиков или любых других источников аналоговой информации поступает на быстродействующие аналоговые ключи. Работой, которых управляет схема временного разделения каналов, состоящая из дешифратора 1, счётчика 1 и генератора импульсов 1.Схема работает следующим образом:

Генератор импульсов 1 выдаёт короткие импульсы расстояния, между которыми равны времени преобразования А.Ц.П. Эти импульсы подсчитываются трёхразрядным асинхронным счётчиком импульсов граф которого имеет такой вид

Такой счётчик легко реализовать на трёх синхронных D-триггерах. Трёх разрядный двоичный код со счётчика 1 поступает на дешифратор 1, который в зависимости от кода подключает соответствующие каналы.

Таким образом, на вход А.Ц.П. поступают последовательно аналоговые сигналы с соответствующих аналоговых входов. А.Ц.П. синхронизируется побитовым генератором. Это генератор коротких импульсов, расстояние между которыми равно длительности элементарного символа в коде. А.Ц.П., как правило, содержит на выходе параллельный регистр, у которого выходы находятся в так называемом третьем состоянии (высокий импенданс) . Чтобы обеспечить вывод данных нужен сигнал разрешения он поступает от генератора импульсов 1. После вывода параллельного кода выводы этого регистра автоматически переходят обратно в третье состояние.

С А.Ц.П. выходит 9 разрядный параллельный код командного слова, который поступает на преобразователь кода из параллельного в последовательный. Такой преобразователь может быть выполнен на параллельно-последовательном регистре, который синхронизируется также от побитового генератора.

В качестве синхрослова используется 63 разрядная М-последовательность. Синхрослово должно быть в начале кадра. Схема формирования синхрослова может быть выполнена на основе формирователя М-последовательности и на основе П.З.У. Первый вариант схемы (рис.1) работает таким образом:

Имеется формирователь М-последовательности (Ф.М.П.), который легко реализуется с помощью линейных переключательных схем на основе сдвигающих регистров. Принцип формирования в данном проекте рассматривать не будем, он очень подробно рассмотрен в литературе . В качестве синхросигнала для Ф.М.П. используется побитовый генератор импульсов. Генерация последовательности начинается, когда приходит сигнал высокого уровня со схемы сравнения (сигнал пуск). Такой сигнал возможен только в том случае если подключен первый канал и начат вывод из А.Ц.П. первого кодового слова. Для формирования 63 разрядной М-последовательности необходимо 64 импульса. Схема подсчёта этих импульсов выполнена на счётчике 2 и дешифраторе 2. Как только счётчик насчитывает 64 импульса на соответствующем выходе дешифратора появляется сигнал высокого уровня (сигнал останов.), который останавливает Ф.М.П. Так как счётчик 2 будет постоянно считать импульсы с побитового генератора импульсов, то в момент начала формирования М-последовательности его надо вернуть в исходное состояние (сбросить). Для этого сигнал пуск со схемы сравнения подаётся на ключ, который подключает сигнал высокого уровня на небольшое время к входу сброса счётчика. Сигнал останов. также переводит регистр-преобразователь кода из третьего состояния в рабочее и с его выхода начинает выходить М-последовательность в последовательном двоичном коде. Как только все 63 разряда синхрослова выйдут из регистра, он автоматически переходит в третье состояние.

Второй вариант схемы (рис.2) формирования М-последовательности основан на использовании П.З.У. Принцип работы такой:

Аналогично схеме с генератором М-последовательности имеется сигнал пуск. Он поступает на П.З.У. и переводит его в режим считывания. В П.З.У. заранее запрограммирована нужная 63 разрядная М-последовательность. Также на П.З.У. поступает сигнал синхронизации от битового генератора, как и в предыдущей схеме. Синхрослово выходит в параллельном коде из П.З.У. и поступает на преобразователь кода в виде регистра. После вывода П.З.У. выходит из режима считывания и ждёт сигнал пуск. Сигнал пуск также переводит преобразователь кода в рабочее состояние, и начинается вывод синхрослова в последовательном коде под действием сигнала синхронизации, поступающего от битового генератора. Эта схема наиболее простая так как требуется меньше сигналов управления по сравнению со схемой на формирователе. Также малогабаритнее, дешевле и надёжнее так как используется меньше радиоэлементов и микросхемы П.З.У. такой малой емкости очень дёшевы. В работе я рассмотрел простейший вариант схемы. Вообще, как правило, такие схемы формирования делаются на микропроцессорном комплекте или микроконтроллерах, тогда всё управление можно осуществлять программным путём через порты ввода-вывода.

Синхрослово поступает на сумматор, где суммируется с кодовыми словами. Чтобы не было наложения синхрослова на кодовые слова необходимо задержать кодовые слова на время равное длительности синхрослова. Это делается с помощью цифровой линии задержки или блока памяти.

В результате образуется кадр, состоящий из синхрослова и 7кодовых слов, разделённых по времени. Далее,сигнал поступает на в.ч. каскад (рис.3) где он поступает на фазовый манипулятор, с помощью которого манипулируется поднесущая. Сформированным фазоманипулированным сигналом на поднесущей осуществляется фазовая модуляция несущего колебания.

На в.ч. каскад


На в.ч. каскад






С обратной связью наиболее характерно для управления бортовой аппаратурой космических аппаратов. 4. Разработка функциональной схемы радиолинии 4.1 Спектр сигнала КИМ-ЧМ-ФМ Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной...




... : 2.4 Расчет энергетического потенциала Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. В задании курсового проектирования задана линия с расстоянием между приемником и передатчиком 200 км. Зададимся, что это линия Земля - управляемый объект. Линия связи подобного типа предназначена для...

Применяется посимвольный прием. Рисунок 1. Функциональная схема радиолинии КИМ-ФМ Необходимо знать - скорость передачи информации R (двоичных единиц в секунду), энергетический потен­циал радиолинии, закон изменения несущей частоты из-за нестабильности передатчика и движения передающего и принимающего пунктов. Предполагается также, что символы в КИМ сигнале могут считаться независимыми, а...

Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал. Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии. Цифровая радиолиния с...

РАДИООБОРУДОВАНИЕ

ВОЗДУШНОГО СУДНА

(САМОЛЕТ Diamond DA 40 NG)

УЧЕБНОЕ ПОСОБИЕ

Составили: Задорожный В.И.

Савчук Н.А.

г.Бугуруслан

Общие понятия о радиосвязи.

Радиосвязь осуществляется при помощи радиостанций. В основу радиосвязи положен принцип излучения в пространство электромагнитной энергии в виде радиоволн.

Электромагнитная энергия радиоволн есть энергия переменных токов очень высокой частоты, порядка миллионов и выше периодов в секунду. Электромагнитная энергия радиоволн вырабатывается передатчиком радиостанции и излучается в пространство передающей антенной. Излученная из пункта передачи электромагнитная энергия с громадной скоростью, равной скорости света (300 000 км/сек), распространяется в пространстве и в пункте приема принимается другой радиостанцией, состоящей из антенны и радиоприемного устройства.

В состав любой приемно-передающей радиостанции обязательно входят приемник и радиопередатчик.

Основным назначением передатчика является генерирование переменных токов высокой частоты, которыми должна питаться передающая антенна. Генерирование токов высокой частоты в передатчике достигается преобразованием энергии постоянного тока в колебания токов высокой частоты.

Генератор передатчика генерирует синусоидальные и неизменные по амплитуде токи высокой частоты. Для передачи информации эти колебания подвергаются модуляции либо радиотелеграфной азбукой, либо голосом. Первый вид радиопередачи называется радиотелеграфией , а второй - радиотелефонией .


При радиотелеграфной работе электромагнитная энергия улучается в пространство не непрерывно, а в виде серий колебаний различной продолжительности, но с одинаковой амплитудой (на несущей частоте); серии колебаний соответствуют коду радиотелеграфной азбуки (рис.1). В этом случае управление колебаниями осуществляется при помощи обыкновенного радиотелеграфного ключа.

При радиотелефонной работе, наоборот, антенна питается током высокой частоты непрерывно, но сам ток все время изменяется по величине (колебания, модулированные по амплитуде) в такт с частотой звуковых колебании голоса оператора (рис.2). В этом случае управление колебаниями осуществляется через микрофон (ларингофон) - прибор, преобразующий звуковые колебания (механические колебания мембраны) в электрические колебания низкой, звуковой частоты.

Кроме передатчика, в состав любой приемно-передающей радиостанции в качестве обязательного элемента входит антенная система, состоящая из собственно антенны и противовеса . Антенная система - это устройство, которое излучает электромагнитную энергию при передаче и улавливает, принимает ее из пространства при приеме. Антенна представляет собой либо одиночный провод, либо систему проводов, приподнятых над землей или над корпусом самолета и изолированных на верхнем конце. Противовесом на самолете служит самый корпус его. На ультракоротких волнах (УКВ) антенна самолетной радиостанции чаще всего представляет собой толстый стержень ножевидной формы.

Устройство и принцип действия радиопередатчиков.

Устройство и принцип действия радиоприемников.

Принцип радителефонной модуляции.

Сведения об антеннах и излучении электромагнитной энергии.

Антенны.

Антенна - необходимая часть любого радиопередающего и радиоприёмного устройства. При помощи фидеров передающая антенна соединяется с радиопередатчиком, а приёмная антенна - с радиоприёмником. Между антеннами распространяются свободные электромагнитные волны. Радиоволны в пространстве рассеиваются и поглощаются окружающей средой. Для уменьшения потерь их концентрируют в определённых направлениях.

Передающая антенна предназначена для преобразования энергии радиосигнала в свободные электромагнитные волны, излучаемые в заданных направлениях.

Приёмная антенна предназначена для преобразования электромагнитных волн, приходящих с определённых направлений, в энергию радиосигнала, принимающего форму связанных электромагнитных волн.

Таким образом, в приёмной и передающей антеннах происходят обратимые процессы. Иногда для приёма и передачи применяется одна антенна, что имеет большое значение в практике.

Колебания излучает открытый колебательный контур, который можно образовать из замкнутого, раздвигая пластины конденсатора и одновременно увеличивая их размеры для сохранения постоянства собственной частоты.

На практике широко применяются несимметричные вибраторы, у которых земля заменяет второй провод симметричного вибратора. Это возможно благодаря хорошей проводимости земли.

Если антенна направленная, то плотность потока мощности излучения такой антенны в разных направлениях различна. О направленных свойствах антенны судят по её диаграмме направленности - зависимости напряжённости поля излучения от направления при измерении этого поля на одинаковом расстоянии от антенны, т.е. она показывает форму радиополя данной антенны.

К антеннам предъявляются следующие эксплуатационные требования: безопасность эксплуатации, высокая механическая прочность и надёжность, минимальные габариты; и вес, небольшая стоимость и т.д.

Условия эксплуатации самолётных антенн специфичны. Выступающие части их создают аэродинамическое сопротивление. Если антенна слабо направлена, то она облучает фюзеляж самолёта, вследствие чего искажается диаграмма н

Типы самолетных антенн.

Современные самолеты оборудуются жесткими антенными устройствами . Для приема и передачи используется одна и та же антенна. В момент работы самолетной радиостанции на передачу антенна посредством специального антенного реле подключается к передатчику, а в момент работы станции на прием - к приемнику.

На рис.7 изображена жесткая Г-образная коротковолновая антенна цельнометаллического самолета для радиостанций дальней связи . Она изготовляется из медного провода.


Рис.8. Общий вид самолетной ультракоротковолновой антенны

Штыревая антенна типа АШС-I удобообтекаемой формы наклонена к поверхности фюзеляжа для уменьшения аэродинамического сопротивления. Такую антенну используют в командных радиостанциях на метровых и дециметровых волнах и в автоматическом радиокомпасе , работающем на средневолновом диапазоне.

Работу автоматического радиокомпаса обеспечивает штыревая и рамочная антенны. В простейшем случае рамочная антенна представляет собой плоский виток провода прямоугольной формы. Ось вращения 00" совпадает с осью симметрии рамки.


Рис.9. Рамочная антенна и диаграмма направленности

Рамка в горизонтальной плоскости обладает направленными свойствами: её диаграмма направленности имеет форму восьмёрки (рис.9).

В направлении перпендикулярном плоскости рамки, отсутствует разность хода волн к её противоположным вертикальным проводам, поэтому приёма не будет. Наибольшие разность хода вода и амплитуда результирующей э.д.с. будут при у =0° и у =180°.

Действующая высота рамки значительно меньше геометрической. Поэтому рамка имеет малое сопротивление излучения и к.п.д., применяется она только в качестве приёмной антенны. Вращая рамку до получения в ней наибольшей э.д.с. устанавливают направление на радиостанцию.

Минимум диаграммы острее максимума, поэтому рамочной антенной чаще пеленгуют по минимальному приёму.

Магнитные антенны - разновидность рамочных антенн. У таких антенн сердечник с высокой магнитной проницаемостью (феррит).

В радиовысотомере применяют однотипные антенны полуволнового вибратора: одна из них - передающая, а другая - приёмная. Собственно вибратор состоит из двух металлических трубок, изолированных друг от друга кольцом из радио-фарфора. Антенны крепятся под фюзеляжем самолёта на расстоянии достаточном для ослабления взаимного влияния антенн.

Заземление и противовес.

Заземлять одну половину антенны имеет смысл в том случае, если почва служит хорошим проводником. Достаточно хорошей проводимостью обладают морская вода и сырая почва. Сухая почва и песок имеют плохую проводимость, вследствие чего получаются большие потери энергии при работе радиостанции. В этом случае нужно устраивать заземление, зарывая в землю проводник или несколько проводников. Заземление в радиостанциях служит как бы одной из обкладок «конденсатора» антенна-земля. Кроме того, в землю отводятся электрические заряды, возникающие в антенне из-за электризации сухим снегом, пылью, или во время грозы.

При твёрдом грунте, на передвижных радиостанциях и на самолётах применяют противовесы. Противовес представляет собой несколько проводов, которые подвешиваются под антенной невысоко над землей. На противовес, изолированный от земли, замыкаются силовые линии электрического поля антенны.

Идеальный противовес должен представлять собой большую металлическую площадь над поверхностью земли. В этом случае противовес должен представлять сплошной экран для электромагнитного поля и тем самим сводить к минимуму потери энергии в земле. Однако выполнение такого противовеса практически затруднительно. Иногда в качестве противовеса используют металлический корпус радиостанции. Противовесом для самолётных радиостанций служит металлический фюзеляж. Но распределение токов в фюзеляже отличается от распределения их в противовесе. В связи с этим изменяются пространственное распределение электромагнитного поля и направленное распространение радиоволн.

Металлизация.

Под металлизацией понимают надёжное электрическое соединение всех металлических частей самолёта и деталей его оборудования между собой и корпусом самолёта. Наличие металлизации обеспечивает:

1. Создание сплошного минусового провода, поскольку минус бортсети «заземлён» на корпус самолёта.

2. Выравнивание потенциала статического электричества, возникающего на частях самолёта и деталях в полёте.

3. Создание эффективного противовеса для передающих устройств радиостанций.

4. Уменьшение помех радиоприёму и увеличение пожарной безопасности самолёта.

На самолёте металлизированы органы управления самолётом, авиадвигатель и его рама, масляная и топливная системы, приборные панели, электрооборудование, агрегаты и экранированные кабели радиоаппаратуры.

Металлизация съёмных и подвижных узлов и агрегатов выполнена гибкими перемычками из медной луженой плетенки, концы которой заделаны в наконечники.

Ионосфера и ее свойства.

Под влиянием лучей Солнца, космических лучей и других факторов воздух ионизируется, т.е. часть атомов газов, входящих в состав воздуха, распадается на свободные электроны и положительные ионы. Ионизированный воздух оказывает сильное влияние на распространение радиоволн.

Для различных газов максимум ионизации получается на разной высоте. Ионизированный слой атмосферы - ионосфера - состоит из нескольких слоев.

На высоте 60...80 км находится слой D, существующий только днем. Следующий слой Е располагается на высоте 90... 130 км. Еще выше находится слой F, имеющий ночью высоту 250...350 км, а днем разделяющийся на два слоя: F 1 - на высоте 180...220 км и F 2 - на высоте 220...500 км.

Высота, толщина и проводимость ионизированных слоев различны в разное время суток и года вследствие изменения ионизирующего действия солнечных лучей. Чем больше ионизирующее действие солнечных лучей, тем больше проводимость и толщина ионизированных слоев и тем ниже они располагаются. Днем проводимость и толщина их больше, а высота над землей меньше, чем ночью. Летом проводимость и толщина ионосферных слоев больше, а высота меньше, чем зимой. Через каждые 11 лет на Солнце повторяется максимум солнечных пятен, являющихся мощными источниками ионизирующих излучений. В это время проводимость и толщина ионизированных слоев достигают максимума, и они располагаются ниже.

Системы внутренней и внешней связи.

На приборной доске пилотов между индикаторами PFD и MFD установлена цифровая аудиопанель Garmin GMA 1347. Она является неотъемлемой частью ком­плекса Garmin G 1000, связана с интегрированными блоками бортового радиоэлектронного оборудования GIA 63 по протоколу обмена цифровыми данными RS-232 и предназначен для:

Внутренней связи (Intercom) членов экипажа и пассажиров через авиагарнитуры с автоматической коммутацией «приём/передача», ручной регулировкой громкости и шумо­подавления;

Внешней симплексной, беспоисковой и бесподстроечной радиосвязи через две ОВЧ-радиостанции СОМ 1 и/или СОМ 2 и авиагарнитуры пилотов;

Повторного воспроизведения записываемой звуковой информации с выходов радио­станций СОМ 1или СОМ 2;

Для прослушивания опознавательных сигналов одного из наземных радиомаяков VOR, DME, NDB (приводных радиостанций) или курсового радиомаяка LOC системы по­садки ILS по выбору пилотов;

Прослушивания сигналов маркерных радиомаяков систем посадки или маршрутных маркерных радиомаяков (практически не используются) без выбора пилотов. Для большинства российских аэродромов пролёт дальнего маяка сопровождается звучанием прерывистого тона частотой 3000 Гц в виде серии двух тире в секунду, а пролёт ближнего - в виде серии шести точек в секунду;

Трансляции звуковых сигналов выбранных средств через кабинный громкоговори­тель с его приглушением на время включения микрофонов при ведении радиообмена;

Ручного включения режима совмещённой индикации пилотажной и другой важной информации на исправном дисплее в случае отказа одного из индикаторов PFD или MFD.

Кабинный громкоговоритель, а также микрофоны и головные телефоны авиагарнитур пилотов и двух пассажиров подключаются к аудиопанели. Громкоговоритель расположен на потолке кабины над пассажирскими креслами. Гнезда для подключения разъёмов четырёх авиагарнитур расположены на задней части центрального пульта между креслами пилотов.

Для подключения микрофонов авиагарнитур обоих пилотов к передатчикам радиостан­ций при ведении радиообмена, а также при оповещении пассажиров на ручках управления пилотов расположены кнопки РТТ (Push-To-Talk - аналог кнопки «Радио»).

На лицевой части аудиопанели расположены следующие органы управления:

- СОМ 1 MIC - клавиша для выбора радиостанции СОМ 1, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

- СОМ 2 MIC - клавиша для выбора радиостанции СОМ 2, через которую можно вести приём и передачу речевой информации от микрофона авиагарнитуры при нажатии кнопки РТТ на ручке управления одного из пилотов;

- СОМ 3 MIC - клавиша не задействована;

- СОМ 1 - клавиша для выбора радиостанции СОМ 1 только для прослушивания принимаемых через неё сообщений;

COM 2 - клавиша для выбора радиостанции СОМ 2 только для прослушивания при­нимаемых через неё сообщений;

- СОМ 3 - клавиша не задействована;

- СОМ 1/2 - клавиша, после нажатия которой 1-й и 2-й пило­ты могут одновременно и независимо вести радиообмен, причём 1 - й пилот через радиостанцию СОМ 1, а 2-й - через СОМ 2. Кроме того, 1 -й пилот может прослушивать также опознавательные сигна­лы выбранных радиомаяков, тогда как 2-й пилот - только речевые сообщения, принятые радиостанцией СОМ 2;

TEL - клавиша не задействована;

РА - клавиша для обращения к пассажирам при нажатии кнопки РТТ на ручке управления одного из пилотов. Если при этом нажата клавиша СОМ 1/2, то только 2-й пилот может обра­щаться к пассажирам через кабинный громкоговоритель;

SPKR - клавиша для подключения кабинного громкого­ворителя. Через него транслируются сигналы выбранных радио­средств, а также сигналы, которые выдаются независимо от выбо­ра экипажа. При включении микрофонов на передачу кнопкой РТТ звук громкоговорителя приглушается;

MKR/MUTE - клавиша, позволяющая временно отключить прослушивание сигналов пролетаемого маркерного маяка в тех случаях, когда, например, они мешают приёму информации от авиадиспетчера. При этом пилоты наблюдают сигнал маркерного маяка на дисплее PFD. Кроме того, клавиша позволяет прерывать прослушивание записанных речевых сигналов диспетчера;

HI SENS - клавиша, которая при нажатии позволяет повы­сить чувствительность маркерного приёмника с 1000 мкВ до 200 мкВ, что необходимо для приёма сигналов маршрутных мая­ков на больших высотах полёта;

AUX - клавиша не задействована. Она может быть ис­пользована при установке на самолёте дополнительных (Auxiliary) навигационных средств;

DME, NAV 1, NAV 2, ADF - клавиши, которые при нажатии позволяют выбирать соответствующие радиомаяки для прослу­шивания с целью их опознавания или приёма сообщений, транслируемых через них, (напри­мер, аварийных передач от диспетчера через дальний приводной радиомаяк);

MAN SQ - клавиша, которая при её нажатии переключает ручки PILOT-0-PASS из режима регулировки громкости прослушивания в режим ручной (Manually) регулировки по­давителя шума (Squelch);

- PLAY - клавиша для повторного воспроизведения записанных в цифровой форме звуковых сообщений, например, авиадиспетчера в тех случаях, когда они не были восприняты экипажем с первого раза;

- PILOT и COPLT - клавиши, используемые для коммутации внутрисамолётной связи. В зависимости от сочетания включения этих клавиш возможны четыре режима внутрисамолётной связи:

Включена только клавиша PILOT - 1-й пилот изолирован и может прослушивать только выбранные радиосредства, 2-й пилот и пассажиры могут общаться между собой.

Включена только клавиша COPLT - 2-й пилот изолирован, 1-й пилот и пассажиры могут прослушивать выбранные радиосредства и общаться между собой.

Обе клавиши PILOT и COPLT включены - 1-й и 2-й пилоты изолированы от пасса, жиров, могут общаться между собой и прослушивать выбранные радиосредства. Пассажиры могут общаться только между собой.

Обе клавиши PILOT и COPLT выключены - и пассажиры, и пилоты могут общаться и прослушивать выбранные радиосредства;

- PILOT-0-PASS - сдвоенные ручки для регулировки громкости прослушивания 1-м пи­лотом (внутренняя) и 2-м пилотом и пассажирами (наружная). При этом слева и снизу от ручек подсвечивается надпись VOL. При включенной клавише MAN SQ - эти ручки соответственно позволяют регулировать также уровень подавителя шума. При этом справа и снизу от ручек подсвечивается надпись SQ. Переключение между режимами VOL и SQ в этом случае произ­водится последовательным нажатием внутренней малой ручки-кнопки;

DISPLAY BACKUP - кнопка для переключения индикации дисплеев PFD и MFD в со­вмещённый режим при отказе одного из них. Кнопка должна быть нажата и при автоматиче­ском переходе в режим совмещённой индикации при мигании неисправного индикатора.

При нажатии клавиш аудиопанели и включении соответствующего режима начинает светиться сигнализатор в виде белого треугольника над клавишей (см. рис. 2.15).

Аудиопанель получает электропитание постоянным током напряжением 28 В от ши­ны AVIONIC BUS бортового радиоэлектронного оборудования (авионики) с защитой через автомат защиты AUDIO номиналом 5 А.

При включении аудиопанели, а также в процессе работы производится её самотестиро­вание. При обнаружении отказов появляется соответствующее сообщение в окне уведом­ляющих сообщений «ALERTS » на дисплее PFD. Перечень сообщений, касающихся аудиопа­нели и связанного с ней оборудования, приведён в табл.1. При появлении таких сообще­ний требуется техническое обслуживание оборудования.

Таблица1.

Вылет с отказавшей аудиопанелью запрещён. Под приборной доской слева располо­жен разъём для подключения дополнительного микрофона. Вместе с громкоговорителем он может быть использован левым пилотом вместо авиагарнитуры. Радиостанции СОМ 1 и СОМ 2 являются неотъемлемой частью интегрированного ком­плекса Garmin G 1000, встроены в блоки БРЭО G1A 63 и предназначены для:

Симплексной бесподстроечной командной радиосвязи в ОВЧ-диапазоне радиоволн. Двухсторонняя авиационная воздушная связь ведётся с авиадиспетчерами, с экипажами дру­гих ВС или диспетчерами производственных служб авиапредприятий;

Прослушивания сообщений вспомогательных аэродромных служб, например ATIS, служб метеообеспечения VOLMET, SIGMET и т. п.;

Радиосвязи на международной аварийной частоте 121,500 МГц, например, при про­ведении поисково-спасательных работ.

В состав обеих радиостанций кроме приёмопередающей аппаратуры, интегрированной в блоки GIA 63, входят переключатели «приём-передача» - кнопки РТТ, установленные на ручках управления пилотов и штыревые антенны (антенна радиостанции СОМ 2 имеет L- образную форму). Размещение антенн радиостанций и их внешний вид показано на рис. 1.

Рис. 1. Внешний вид антенн ОВЧ радиостанций:

а - антенна радиостанции СОМ 1; б - антенна радиостанции СОМ 2

Радиостанции СОМ 1 и СОМ 2 идентичны и характеризуются следующими основными эксплуатационно-техническими показателями:

Диапазон рабочих частот, МГц 118,000-136,975

Шаг сетки частот, кГц 25 или 8,33 (по выбору экипажа)

Вид модуляции амплитудная (AM)

Средняя мощность передатчика, Вт 16

Напряжение электропитания, В 28 постоянного тока

Дальность действия, км 120 -130 при высоте полёта 1000 м

Чувствительность приёмника, мкВ 2,5

Выбор шага сетки частот (CHANNEL SPACING) осуществляется экипажем на четв£ той странице «AUX-SYSTEM SETUP» группы «AUX» на дисплее MFD в разделе «СОM CONFIG» с помощью ручек FMS .

Радиостанция СОМ1 получает электропитание постоянным током напряжением 28 В от левой основной шины LH MAIN BUS с защитой через автомат защиты СОМ 1 номиналом 5А, а радиостанция СОМ 2 - от шины БРЭО AVIONIC BUS через автомат защиты СОМ г номиналом также 5 А.

Радиостанции не имеют собственных пультов управления. Все органы управления ра­диостанциями и индикаторы настройки сосредоточены в правой верхней части каждого из дисплеев - PFD и MFD (рис. 2.). Действие данных органов управления и индикаторов на­стройки одинаково, независимо от того, на каком дисплее они используются экипажем.

Рис. 2 Правая верхняя часть дисплеев PFD и MFD

Настройка радиостанций может производиться либо вручную, либо из аэронавигаци­онной базы данных. Информация о частотах наземных радиостанций для УВД, действующих в тех или иных зонах воздушного пространства, берётся из обновляемой базы аэронавигаци­онных данных. Например, на дисплее MFD с помощью ручек FMS в группе страниц «WPT» выбирается первая страница «WPT-AIRPORT INFORMATION». Затем в разделе «FRE­QUENCIES» выбирается частота нужного сектора УВД. Выбор подтверждается нажатием клавиши ENT. После этого значение частоты появляется в окне подготовленных частот на­страиваемой радиостанции. Аналогично ускоренная настройка радиостанций в аварийных ситуациях возможна из базы данных ближайших аэродромов (NEAREST AIRPORTS).

Ручная настройка радиостанций осуществляется сдвоенными ручками СОМ, причём малой внутренней ручкой устанавливаются значения частоты в кГц, а большой наружной ручкой - в МГц. На то, какая радиостанция настраивается, указывает голубая рамка, цвет цифр и символ « » между активной и подготавливаемой частотами. Переключение между радиостанциями СОМ 1 и СОМ 2 для их настройки и управления производится нажатием малой внутренней ручки-кнопки СОМ (обратно - повторным нажатием). Радиостанции, вы­бранные нажатием клавиш COM MIC и/или СОМ на аудиопанели для ведения радиосвязи и/или прослушивания, представлены значением их рабочих частот в зелёном цвете (СОМ 1 на рис. 2.17). Переключение между рабочей частотой и подготовленной частотой, обозна­ченной голубым цветом и рамкой, производится нажатием клавиши « » (Transfer). Длитель­ное (около 2 с) нажатие на эту клавишу переводит рабочую частоту в область, обозначенную голубой рамкой, т. е. в подготовленную, а радиостанция перестраивается на международную аварийную частоту 121,500 МГц.

Уровень принимаемого сигнала (громкость) устанавливается ручкой VOL для той ра­диостанции, которая выбрана малой внутренней ручкой-кнопкой СОМ для настройки и управления. При вращении ручки VOL уровень сигнала изменяется от 0 до 100%. Изме­няемое значение уровня в процентах со словом «VOLUME» индицируется вместо значений подготовленной частоты без рамки. Индикация продолжается в течение трёх секунд после завершения вращения ручки VOL. Эта ручка является также кнопкой, нажатием на которую включается автоматическое подавление шума (Squelch) в приёмнике выбранной для на­стройки радиостанции. Выключение подавителя шума производится повторным нажатием.

Во время приёма сообщений на рабочей частоте выбранной радиостанции рядом с ото­бражаемым значением частоты появляются буквы RX, а во время передачи - буквы ТХ.

Контроль работоспособности радиостанций осуществляется экипажем путём самопрослушивания в телефонах авиагарнитуры при выходе на внешнюю радиосвязь. Отказ ра­диостанций обнаруживается также отсутствием прослушивания сообщений при работе на приём.

Кроме того, при включении и в процессе работы радиостанций производится их само­тестирование. При обнаружении отказов вместо цифровых значений частот отказавшей ра­диостанции появляется перекрестие красного цвета. Кроме того, появляется соответствую­щее сообщение в окне уведомляющих сообщений «ALERTS» на дисплее PFD.

Перечень сообщений, касающихся радиостанций СОМ 1, СОМ 2 и связанного с ними оборудования, приведён в табл.2. При появлении таких сообщений требуется техническое обслуживание оборудования. Таблица 2.

При отказе аудиопанели или блоков цифровой обработки звуковых сигналов радистанция СОМ 1 работает без цифровой обработки сигналов и подключается непосредственной к авиагарнитуре 1-го пилота.

Перед полётом, при осмотре самолёта необходимо проверить целостность антенн, от. сутствие на них льда и загрязнений. Вылет с отказавшей радиостанцией запрещён. Отказ обеих радиостанций в полёте соответствует аварийной ситуации «Отказ радиосвязи». В этом случае необходимо установить код ответчика УВД (Squawk) равным 7600 для информирова­ния авиадиспетчера об отказе радиосвязи.

Автоматический радиокомпас.

Назначение: 1) Определяет КУР ;

2) Автоматический радиокомпас KR 87 предназначен для решения

следующих навигационных задач:

Полет на радиостанцию и от нее с визуальной индикацией

курсового угла;

Заход на посадку совместно с другими приборами по системе обеспечения

слепой посадки;

Автоматическое и непрерывное определение и визуальная

индикация курсового угла радиостанции (КУР ) в пределах от до 360° ;

Слуховой прием позывных сигналов радиостанций, работающих в диапазоне частот радиокомпаса.

О.Т.Д.: 1) U пит = 28В ; 2) f р = 200-1799 кГц ; 3) ΔКУР = ±3º; 4) Д = 160-180 км;

Состав и 1) Приемник;

размещение: 2) Антенна радиокомпаса– снизу фюзеляжа;

3) Индикатор;

Особенности

распространения СВ:

СВ распространяются около поверхности земли в зависимости от времени суток следующим образом: а) Ночью - двумя лучами поверхностным (1) и пространственным (2) , отраженным от верхних слоев ионосферы Е, F ;

б) Днём - только поверхностным (1) , т.к. пространственный луч поглощается нижним слоем ионосферы Д .

Поэтому дальность действия АРК зависит от времени суток и от мощности ПРС .

Режимы работы

и принцип действия: АРК имеет 2 режима работы:

1) «ANT» (антенна) - в этом режиме прием ведется только на одну штыревую антенну, которая имеет круговую диаграмму направленности, поэтому он используется для настройки приемника АРК на частоту ПРС или может быть использован как связной радиоприемник СВ .

Органы управления

и контроля:

Указатель KI 227.

Лицевая панель прибора КI 227

Автоматический радиокомпас KR 87 имеет два рабочих режима;

Режим ANT (антенна),

Режим ADF (компас),

В режиме ANT радиопеленгатор выключен, рамочная антенна блокирована, прибор работает как приемник, позволяющий вести прием звуковых сигналов радиомаяка через громкоговоритель или наушники.

Этот режим обеспечивает более чистый прием звуковых сигналов и используется для опознавания радиостанции.

В разных регионах мира некоторые станции, работающие на низких средних частотах, используют телеграфную систему передач в опознавательных целях. Эти станции легко опознаются с помощью кнопки BFO . При нажатии кнопки BFO сигнал в 1000Гц становится слышимым, как только появляется высокочастотный радиосигнал на выбранной частоте. Сообщение BFO высвечивается в центре дисплея.

Переход к режиму ADF осуществляется нажатием на кнопку ADF , при этом на дисплее слева высветится надпись ADF . На приборе KI 227 стрелка КУР будет показывать курсовой угол радиостанции.

На индикаторе слева высвечивается рабочая (активная) частота, справа - дежурная (резервная) частота или время.

Если радиокомпас высвечивает время, то для индикации дежурной частоты нужно нажать кнопку FRQ .

Настройка АРК

На PFD нажать программную кнопку «ADF/DME», откроется окно «ADF/DME TUNING»;

Нажать FMS, высветится подготовительная частота в окне ADF;

Используя большую и маленькие ручки FMS набрать частоту привода;

2 раза нажать ENT для перевода набранной частоты в рабочую;

Нажать PFD программную кнопку, откроется дополнительные кнопки «BRG-1», «BRG-2»;

Нажать «BRG-1», «BRG-2» до отображения в окошке режима работы ADF и высвечивания частоты привода.

В зависимости от нажатия «BRG-1» или «BRG-2» одинарная или двойная сини стрелки будут показывать на выбранную приводную.

Эксплуатация. 1) Прослушивание АРК KR-87 осуществляется нажатием кнопки ADF на GМА-340 .

2) Режим «антенна» - только для прослушивания. КУР на

KI 227 в этом режиме показывает 90° , слева на панели

KR-87 высвечивается надпись ANT .

3) Режим «компас» - для прослушивания позывных станций

и для индикации КУР на приборе KI 227 . В этом режиме

слева на панели KR-87 высвечивается надпись ADF .

4) Перевод из режима ANT в режим ADF осуществляется нажатием

кнопки ADF на панели KR-87 .

5) Режим BFO – для пеленгования при работе радиостанции в

режиме телеграф. Включается нажатием соответствующей кнопки на KR-87 .

Методические Исходя из особенностей распространения СВ АРК может иметь:

ошибки АРК: 1) Радиодевиация (∆Р) - это отклонение рамочной антенны от истинного направления наПРС , которое происходит за счет того, что вторичное излучение искажает основное радиополе ПРС вблизи самолета. ∆Р зависит в основном от взаимного положения самолета и ПРС , т.е. от КУРа , поэтому радиодевиацию автоматически компенсируют в блоке рамочной антенны специальным механическим (лекальным) устройством.



2) Ошибки, возникающие вследствие влияния: а) ночного, б) горного, в) берегового эффектов при распространении радиоволн (рис.2а,б,в). Могут достигать величины 30º-40º . Учитываются пилотом при полетах в соответствующих условиях.

День Ночь Ночной эффект проявляется в период

утренней и вечерней зари, когда появля -

F ется или исчезает пространственный луч,

Е что приводит к колебаниям стрелки АРК .

Земля

ПРС 1 Горный эффект проявляется при

полетах вблизи гор, когда возможно

Шесть часов утра по московскому времени. В пространство несутся мерные удары кремлевских курантов, и затем раздаются торжественные звуки гимна. Едва отзвучали его последние ноты, как раздается спокойный, четкий голос диктора: «Говорит Москва».

Так начинается день центрального радиовещания. Знаете ли Вы, как происходят эти передачи?

Каким образом каждый звук, возникший в радиостудии, на театральной сцене или в другом месте, откуда ведут радиопередачу, мгновенно доносится к вам за сотни и тысячи километров? Для того чтобы мы могли услышать радиопрограмму, нужно ее, во-первых, передать, а затем принять.

Рис. 1. Звуковые волны вокруг камертона.

Рис. 2. Работа микрофона. а—звука нет, в цепи микрофона течет.постоянный ток; б— под действием звука мембрана вогнута, сопротивление уменьшилось, ток возрос: в —под действием звука мембрана выгнута, сопротивлению увеличилось, ток уменьшился.

Задача передающей радиостанции состоит в том, чтобы превратить речь, пение музыку в электрический ток, а затем преобразовать последний в электромагнитные волны и излучать их в окружающее пространство.

Как же практически решается эта задача? Чтобы выяснить это, вспомним, что такое звук. Звук — это колебания какой-либо среды: воздуха, дерева, металла, воды и т. п. Звуковые колебания в неограниченном пространстве распространяются от источника звука по радиусам во всех направлениях. Средняя скорость распространения звука в воздухе 330 м/сек.

На рис. 1 условно показаны (на самом деле невидимые глазу) периодические «сгущения» и «разрежения» в звукопроводящей среде, которые и представляют собой звуковые колебания или звуковую волну.

Наше ухо способно воспринимать как звук только колебания определенных частот (от 16 до 20 000 колебаний в секунду). Кроме того, амплитуда этих колебаний должна быть достаточно большой, т. е. звук должен обладать определенной силой, иначе мы не сможем его услышать.

Микрофон

И электромагнитные волны и звук — это колебания, но разной природы. Нет ли способа превратить звуковые колебания в электромагнитные? Есть. Для этого сначала нужно звук превратить в колебания электрического.тока.

Прибор, преобразующий звуковые колебания в электрические, называется микрофоном. Опишем принцип действия простейшего микрофона.

На рис. 2 показана металлическая камера, в которую насыпан угольный порошок. С одной стороны эту камеру закрывает гибкая пластинка, укрепленная на изоляторах; со всех остальных сторон камера закрыта наглухо. Камера и пластинка присоединены к источнику постоянного напряжения, создающего в цепи постоянный ток. Но представьте себе, что мы начали говорить, приблизившись к пластинке. Если пластинка достаточно тонка, то под действием звуковых волн, т. е. сгущений и разрежений воздуха, она начинает колебаться. При колебаниях пластинки будет изменяться сила ее давления на угольный порошок, отчего будет меняться сопротивление, оказываемое этим порошком электрическому току. Величина тока начнет меняться. В результате в цепи будет течь пульсирующий ток. Применив довольно простые электротехнические устройства, легко разделить пульсирующий ток на переменный и постоянный.

Мы сумели превратить звуковые колебания в переменный электрический ток. Но дело в том, что электрические колебания, созданные микрофоном, очень слабы; их следует усилить с помощью радиоламп, применяемых в специальных аппаратах — усилителях низкой частоты, а после этого можно передать их по проводам на радиостанцию.

Чтобы понять, как работает радиостанция, придется вернуться к колебательному контуру.

Снова о колебательном контуре. Вспомним наши рассуждения. Излучая радиоволны, антенна непрерывно посылает в пространство электромагнитную энергию высокой частоты, порцию за порцией. Эту энергию антенна поручает из колебательного контура.

Откуда же беспрерывно черпает энергию сам колебательный контур? Очевидно, нужно осуществить устройство, передающее контуру все новые и новые количества энергии взамен тех, которые он с пользой передает антенне, и тех, которые бесполезно затрачивает в самом себе. Нельзя предполагать, что колебательный контур работает как какой-то «вечный» маятник.

Вот о работе устройств, обеспечивающих создание радиоволн, мы теперь и должны сказать.

Радиотехника знает много всяких способов «подбрасывания» энергии в колебательный контур. Все они, за исключением одного, были отвергнуты практикой. Дело в том, что подбрасывание новых порций электрической энергии в контур нужно производить в такт с колебаниями. Не вовремя подброшенная порция электрической энергии не только не поддержит колебания, но будет заглушать их.

Наиболее пригодный способ, посредством которого производится передача в контур новых и новых количеств электрической энергии, применяется уже около 40 лет. Мы имеем в виду использование электронной лампы, которая является душой современной радиотехники.

Для ознакомления с тем, как электронная лампа вместе с колебательным контуром создает токи высокой частоты, в качестве главного «действующего лица» мы возьмем трехэлектродную лампу. Для простоты объяснения принципа работы радиопередатчика мы воспользуемся этой старой заслуженной ветеранкой, а не современными более сложными генераторными лампами.

Поучительный эпизод. Известен интересный эпизод из истории развития паровой машины. Один мальчик был приставлен к примитивной старинной паровой машине. Обязанности мальчика были несложные, но весьма однообразные. В строго определенные моменты времени он должен был открывать и закрывать кран. Важно было не спутаться и н-е открыть кран раньше времени, чтобы не остановить машину. Мальчику; наделенному природной сообразительностью, надоело утомительное занятие. Желая выкроить хотя бы немного свободного времени для своих игр, он пустился на хитрость. Веревками соединил он кран с качающимся коромыслом машины, предоставив самой машине заботиться об открывании и закрывании крана в нужные моменты. Машина была переведена с ручного обслуживания на автоматическое. Краны открывались и закрывались без прикосновения рук.

Этот эпизод напоминает то, что двумя столетиями позже произошло с изобретением лампового генератора токов высокой частоты. В 1913 г. была разработана первая схема лампового генератора, положившая начало ряду других схем, обеспечивающих удобные способы получения токов высокой частоты.

В это время знали, что радиолампа может усиливать слабые переменные электрические токи практически любой частоты. Знали и то, что если усиления одной лампы недостаточно, можно последовательными ступенями включить несколько электронных ламп одну вслед за другой. Несомненно, и до этого времени считали возможным усиленные таким образом мощные колебания высокой частоты подать прямо в антенну. В дверь стучалась идея создания ламповой передающей радиостанции. Не хватало одного: умения решить задачу — откуда взять первоначальный переменный ток, который следует подвести к сетке первой усилительной лампы.

И ученым пришла идея, с внешней стороны имевшая много общего с детской хитростью мальчика, обслуживавшего паровую машину. Они решили перевести электронную лампу на самообслуживание. Пусть она не ждет, когда ей соберутся подать к сетке переменное напряжение, а сама заботится об этом.

Рис. 3. Схема генератора с трансформаторной связью.

Иными словами, лампу заставили заниматься не только усилением уже ранее где-то и чем-то созданных переменных токов, но и самой возбуждать, генерировать их..

Таким образом, был создан первый ламповый генератор незатухающих колебаний. Первый ламповый генератор. Схема этого генератора исключитель но проста (рис. 3). В анодной цепи электронной лампы (триода) Л включен колебательный контур LC, а в цепи сетки лампы — катушка L c , близко расположенная в контурной катушке L. Вот и весь генератор.

Чтобы понять, как работает ламповый генератор, сделаем небольшое допущение. Оно нужно только на короткое время, и мы от него вскоре откажемся. Представим дебе, что в колебательном контуре LC уже поддерживаются незатухающие колебания. Ток в катушке L непрерывно меняет свое направление, и с такой же частотой заряжается и разряжается конденсатор С. Следуя за изменениями тока в контуре, меняются величина и направление магнитного поля вокруг катушки L То возникая, то исчезая, оно воздействует на витки катушки L с (пересекает их) и,как это получается в любом трансформаторе, по индукции наводит в них напряжение.

Но к катушке L c присоединена сетка лампы; следовательно, с такой же частотой, с какой колеблется ток в контуре, будет меняться и напряжение на сетке. Сетка действует автоматически, она не ошибается: «плюс» на сетке увеличивает анодный ток, протекающий через лампу, а «минус»— уменьшает его.

Качели можно раскачивать, подталкивая их в такт. Эту обязанность в лампе с большим прилежанием выполняет сетка, получающая то положительные, то отрицательные заряды. Она не дает покоя анодному току, заставляя его совершать непрерывные колебания.

Так и, не удается анодному току течь спокойно. Все время, пока нить (катод) лампы накалена, а на аноде лампы имеется положи-, тельное напряжение, ламповый генератор создает незатухающие колебания. Лампа за счет энергии анодной батареи Б покрывает все потери в контуре. Получается своего рода «идеальный» колебательный контур. Решена задача, получения незатухающих колебаний.

Ламповый генератор может быть уподоблен заведенным пружинным часам или стенным часам с поднятыми гирями. Упругость пружины или вес гирь полностью компенсирует все тормозящие силы трения и заставляет часовой механизм работать безостановочно.

Теперь мы уже можем отбросить наше допущение. Пусть в анодном контуре нет затухающих колебаний: Но первый же толчок тока, вызванный включением генератора, импульсом создаст магнитное поле вокруг контурной катушки. Этот импульс будет передан сетке, и та незамедлительно сделает свое дело. Качели придут в движение. Раскачиваясь все более, они достигнут максимальных размахов, при которых раскачивающих усилий как раз хватит на преодоление всех сил, стремящихся остановить колебания.

Удалось точно построить генератор, который работает сам, без ручного или механического управления. Он сам себя принуждает к действию, самовозбуждается. Поэтому такой генератор называется самовозбуждающимся.

Обратная связь. Разнесите контурную и сеточную катушки на большое расстояние, чтобы магнитное поле контурной катушки не «зацепляло» за витки сеточной катушки, и все кончится. Колебания создаются только потоку что анодная цепь связана с сеточной и передает‘ей возбуждающие импульсы. Такая связь называется обратной связью: вместо того, чтобы колебания из анодной цепи поступали куда-либо дальше, «на выход», они (не полностью, а частично) передаются обратно, на сетку своей Же собственной лампы. Сеточная катушка, посредством которой сетка связывается с цепью анода, называется катушкой обратной связи. Чем больше витков в ней и чем ближе она расположена к контурной катушке, тем большее напряжение индуктируется в ней, тем сильнее связь.

Итак, не электронная лампа создает колебания — они создаются в колебательном контуре. Но никогда бы контур не создал незатухающих колебаний, если бы лампа не подбрасывала в контур все новые и новые количества электрической энергии для компенсации всех потерь — полезных и вредных. Но и лампа не могла бы ничего передать контуру, если бы не получала энергию от источников питания— батарей или электрогенераторов, подающих напряжение на анод.

Темп колебаний или, лучше сказать, частоту навязывает колебательный контур. Колебания медленные, и электронная лампа будет в таком же медленном темпе передавать контуру очередные порции электрической энергии. Но ей никакого труда не составит производить это со скоростью нескольких миллионов или десятков и сотен миллионов раз в секунду. Попробуйте-ка вручную управлять электрической энергией с такой скоростью!

Трехточка

Мы уже указывали, что сетке лампы совершенно безразлично, откуда ей подается «раскачка». В схеме на рис. 3 обратная связь анодного контура с сеткой — трансформаторная. Вскоре было доказано, что иметь отдельную катушку обратной связи совершенно не обязательно. Для этого применили схему, у которой сетка (рис. 4) непосредственно присоединена к контурной катушке L. На сетку лампы Л подается напряжение, возникающее на части А—Б витков контурной катушки. Чем больше витков между точками А и Б, тем большее напряжение подается на сетку, тем сильнее обратная связь. Наоборот, передвигая соединительный проводник сетки к точке Б, мы уменьшали бы обратную связь. Такая связь называется автотрансформаторной. В принципе она ничем не отличается от трансформаторной. Оба способа представляют разновидности индуктивной связи: напряжение на сетке создается благодаря электромагнитной индукции.

Непременным условием действия схемы является такое соединение трех проводников от лампы Л к контуру LC, при котором провод от катода (нити) присоединяется между проводами от анода и сетки. Только тогда сеточные и анодные импульсы будут действовать в такт. Если анодный ток, например, должен увеличиваться, то для этого должно возрастать положительное напряжение на сетке.

Подачу порций энергии от лампы в контур строго в такт радиоспециалисты называют подачей в фазе. Схема с трансформаторной связью может не возбудиться, если импульсы на сетке не в фазе с импульсами анодного тока. В этой схеме правильная фазировка достигается очень просто: если генератор не возбуждается, достаточно переключить концы сеточной катушки. В схеме с автотрансформаторной связью нужно расположить проводники только так, как показано на рис. 4.

Весьма простая по своему устройству, состоящая всего лишь из колебательного контура, в трех точках соединенного с лампой, эта схема пользовалась в свое время особым расположением радиолюбителей. Почти все радиопередатчики первых коротковолновиков имели генератор «трехточку».

Задающий генератор

Ламповому самовозбуждающемуся генератору не хватает еще антенны, чтобы стать радиопередатчиком. Различие между мощными и маломощными радиостанциями заключается главным образом в степени усиления первоначально полученных в ламповом генераторе высокочастотных колебаний.

Рис. 4. Схема генератора с автотрансформаторной связью.

Если требуется мощность больше той, которую в состоянии отдать непосредственно самовозбуждающийся генератор, то применяют ступенчатое усиление все более мощными лампами. Иногда в одном усилительном мощном каскаде для увеличения мощности одновременно включают «в общую упряжку» несколько ламп — две, три и больше. Нередко можно встретить передатчик с тремя-четырьмя и даже семью-восемью каскадами. В таких условиях самовозбуждающийся ламповый генератор, первоисточник электрических колебаний, получает название задающего генератора: он «задает тон» всем остальным — усилительным каскадам, «раскачивает» их.

Задающий генератор —«сердце» передатчика. Остановится «сердце»—и все остановится. Первый усилительный каскад ничего не получит на сетку лампы от задающего каскада и поэтому ничего не передаст второму каскаду, второму нечего будет передавать третьему и т. д. Тщетно антенна будет ожидать получения токов высокой частоты от мощного оконечного каскада.

И «сердце» передатчика тщательно оберегают. Ему вредна перегрузка. На него действуют тепло, выделяемое током в различных деталях установки. Всякое изменение температуры приводит к изменению размеров металлических конструкций, в частности к изменению размеров деталей конденсатора и катушки контура. Меняется индуктивность — меняется емкость, а от этого меняется генерируемая частота, «гуляет» волна радиостанции. В поисках сигналов станции приходится все время перестраивать приемник.

Чтобы избежать неприятностей, от задающего генератора не требуют большой мощности— лишь бы он генерировал колебания строго определенной частоты. Как нежное растение помещают в оранжерею, так и задающий генератор часто помещают в камеру со строго постоянной температурой. Чаще же применяют особые стабилизаторы частоты, которые не позволяют генерируемой частоте отклоняться от заранее установленного значения, от номинала частоты.

Связующим звеном между ламповым генратором и антенной является питающая линия (фидер). Она играет роль плюса в несложном арифметическом выражении:

радиопередатчик = ламповый генератор + антенна .

Питающая линия состоит из проводов или кабеля, соединяющих антенну с ламповым генератором. Таким образом, мы познакомились с общим принципом действия радиопередатчика.

Включаем радиопередатчик. Через радиопередатчики может быть осуществлен любой вид работы: передача радиограмм с помощью телеграфной азбуки (радиотелеграфная передача), передача речи и музыки (радиотелефонная передача), буквопечатание и передача изображений.

Самый простой вид работы — прерывание колебаний; так поступают радисты, выстукивая ключом знаки телеграфной азбуки: при нажатии -ключа замыкаются его контакты и серия высокочастотных колебаний поступает в антенну, при размыкании контактов подача колебаний в антенну прерывается. Короткое время включения соответствует точке, длинное— тире. Этот процесс называется манипуляцией (рис. 5).

Но таким способом можно передавать лишь условные знаки телеграфной азбуки. А если нужно передать речь или музыку, то прежде всего следует обратиться к помощи микрофона.

О первом этапе превращения звука в электрический ток мы уже знаем. Этот ток мы усилили и направили по проводам на радиостанцию. К передатчику, таким образом, звуки пришли в виде электрических колебаний низкой частоты. Что же теперь с ними делать?

Модуляция. Используемые для вещания на больших расстояниях радиоволны имеют длину от 15 до 2000 м, а это значит, что частота, с которой колеблется вызывающий их электрический ток, равна 20 000 000 (20 Мгц) — 150 000 (150 кгц) колебаний в секунду. Самая же высокая звуковая (низкая) частота, которую способно воспринимать наше ухо, имеет примерно 20 000 колебаний в секунду.

Таким образом, получается, что колебания, которые мы можем услышать, имеют весьма низкую частоту и поэтому неспособны излучаться в пространство.

Рис. 5, Ток высокой частоты в антенне передатчика при телеграфной работе.

Рис. 6. Графическое изображение результата модуляции.

Колебания же, излучающиеся на огромные расстояния в виде электромагнитных волн, имеют очень высокую частоту. Такие колебания мы не можем слышать.

Остается, видимо, как-то приспособить высокочастотные колебания для «транспортировки» колебаний, звуковой частоты. Такой способ был найден. Колебания звуковой частоты заставляют воздействовать на колебания высокой частоты. Процесс воздействия низкочастотных колебаний на высокочастотные называется модуляцией.

Электрические колебания звуковой частоты трудно передать далеко, а с помощью высокой частоты они свободно перебрасываются вокруг всего земного шара.

Термин «модуляция» издавна применяется в музыке для обозначения перехода из одной тональности в другую — смены ладов.

В электротехнике модуляция — это изменение какой-нибудь из характеристик электрического тока — его величины, частоты, фазы— в соответствии с колебаниями какого-либо другого тока.

Модуляция — это не просто смешение токов, а такое воздействие низкочастотного тока на высокочастотный, когда низкочастотный ток как бы отпечатывает свою форму на высокочастотном.

Ток высокой частоты, на который воздействует телефонный разговор, называется модулируемым током, модулируемым колебанием. Говорят также:гнесущее колебание. Это удачное название. Оно хорошо показывает сущность процесса. Высокочастотное колебание после модуляции несет на себе (или в себе) отпечаток тока низкой частоты.

Процесс модуляции осуществляется с помощью специального устройства, называемого модулятором. Модулятор осуществляет воздействие токов низких частот на высокочастотные колебания. Делается это в радиопередатчиках посредством специальных модуляторных ламп.

Высокочастотные колебания до модуляции ничем не отличаются одно от другого. Но вследствие действия электрических колебаний, поступающих с микрофона, амплитуда их меняется. Она становится то больше, то меньше. Эти изменения в точности соответствуют колебаниям микрофонного тока, а следовательно, и звуковым колебаниям. Так, на электрические колебания высокой частоты накладывается «отпечаток» (узор) передаваемых звуков, и в результате получаются модулированные колебания, которые излучаются радиостанцией (рис. 6).

Назначение радиопередающих станций очень разнообразно. Некоторые из них ведут передачи для всей страны и располагаются в больших помещениях. Любительская радиостанция часто свободно размещается на столе в квартире коротковолновика. Но как бы ни различались они по своему виду и размерам, принципиальной разницы в их работе нет. Радиотехнические процессы в них почти одинаковы и различаются они в основном только мощностью колебаний и длиной излучаемых радиоволн.

Каждая радиостанция — это фабрика радиоволн. Она потребляет электрическую энергию от батарей или от генератора, или от электрической сети и преобразует ее в высокочастотные электрические колебания, которые после усиления и модуляции попадают в передающую антенну. Отсюда они уже в виде радиоволн начинают свое путешествие к радиоприемникам.

Страницы истории

Радио (лат. radio - излучаю, испускаю лучи radius - луч) - разновидность беспроводной связи, при которой в качестве носителя сигнала используются радиоволны, свободно распространяемые в пространстве.


Принцип работы

Передача происходит следующим образом: на передающей стороне формируется сигнал с требуемыми характеристиками (частота и амплитуда сигнала). Далее передаваемый сигнал модулируетболее высокочастотное колебание (несущее). Полученный модулированный сигнал излучается антенной в пространство. На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).Полученный модулированный сигнал излучается антенной в пространство.
На приёмной стороне радиоволны наводят модулированный сигнал в антенне, после чего он демодулируется (детектируется) и фильтруется ФНЧ (избавляясь тем самым от высокочастотной составляющей- несущей).). Таким образом, происходит извлечение полезного сигнала. Получаемый сигнал может несколько отличаться от передаваемого передатчиком (искажения вследствие помех и наводок).


Частотные диапазоны
Частотная сетка, используемая в радиосвязи, условно разбита на диапазоны:

  • Длинные волны(ДВ)- f = 150-450 кГц (л = 2000-670 м)
  • Средние волны(СВ)- f = 500-1600 кГц (л = 600-190 м)
  • Короткие волны(КВ)- f = 3-30 МГц (л = 100-10 м)
  • Ультракороткие волны(УКВ)- f = 30 МГц- 300 МГц (л = 10-1 м)
  • Высокие частоты (ВЧ- сантиметровый диапазон)- f = 300 МГц- 3 ГГц (л = 1-0,1 м)
  • Крайне высокие частоты (КВЧ- миллиметровый диапазон)- f = 3 ГГц- 30 ГГц (л = 0,1-0,01 м)
  • Гипервысокие частоты (ГВЧ- микрометровый диапазон)- f = 30 ГГц- 300 ГГц (л = 0,01-0,001 м)


В зависимости от диапазона радиоволны имеют свои особенности и законы распространения:

  • ДВ сильно поглощаются ионосферой, основное значение имеют приземные волны, которые распространяются, огибая землю. Их интенсивность по мере удаления от передатчика уменьшается сравнительно быстро.
  • СВ сильно поглощаются ионосферой днём, и район действия определяется приземной волной, вечером хорошо отражаются от ионосферы и район действия определяется отражённой волной.
  • КВ распространяются исключительно посредством отражения ионосферой, поэтому вокруг передатчика существует т.н.зона радиомолчания. Днём лучше распространяются более короткие волны (30 МГц), ночью- более длинные (3 МГц). Короткие волны могут распространяться на больши м е расстояния при малой мощности передатчика.
  • УКВ распространяются прямолинейно и, как правило, не отражаются ионосферой. Легко огибают препятствия и имеют высокую проникающую способность.
  • ВЧ не огибают препятствия, распространяются в пределах прямой видимости. Используются в WiFi, сотовой связи ит.д.
  • КВЧ не огибают препятствия, отражаются большинством препятствий, распространяются в пределах прямой видимости. Используются для спутниковой связи.
  • Гипервысокие частоты не огибают препятствия, отражаются подобно свету, распространяются в пределах прямой видимости. Использование ограничено.


Распространение радиоволн

Радиоволны распространяются в пустоте и в атмосфере; земная твердь и вода для них непрозрачны. Однако, благодаря эффектам дифракции и отражения, возможна связь между точками земной поверхности, не имеющими прямой видимости (в частности, находящимися на большом расстоянии).
Распространение радиоволн от источника к приёмнику может происходить несколькими путями одновременно. Такое распространение называется
многолучёвостью . Вследствие многолучёвости и изменений параметров среды, возникают замирания (англ. fading )- изменение уровня принимаемого сигнала во времени. При многолучёвости изменение уровня сигнала происходит вследствие интерференции, то есть в точке приёма электромагнитное поле представляет собой сумму смещённых во времени радиоволн диапазона.

Особые эффекты

эффект антиподов- радиосигнал может хорошо приниматься в точке земной поверхности, приблизительно противоположной передатчику.
Описанные примеры:

  • радиосвязьЭ.Кренкеля(RPX), находившегося наЗемле Франца-Иосифа12 января 1930г. сАнтарктикой(WFA).
  • радиосвязь плотаКон-Тики(приблизительно 6° ю.ш. 60° з.д.) сОсло, передатчик 6 Ватт.
  • эхо от волны, обошедшей Землю (фиксированная задержка)
  • редко наблюдаемый и малоизученный эффект LDE (Мировое эхо, эхо с большой задержкой).
  • эффект Доплераизменение частоты (длины волны) в зависимости от скорости приближения (или удаления) передатчика сигнала относительно приёмника. При их сближении частота увеличивается, при взаимном удалении уменьшается.


Радиосвязь можно разделить на радиосвязь без применения ретрансляторов по длинам волн:

  • СДВ-связь
  • ДВ-связь
  • СВ-связь
  • КВ-связь
  • КВ-связь земной (поверхностной) волной
  • КВ-связь ионосферной (пространственной волной)волной
  • УКВ-связь
  • УКВ связь прямой видимости
  • тропосферная связь
  • С применением ретрансляторов:
  • Спутниковая связь,
  • Радиорелейная связь,
  • Сотовая связь.


Использование широковещательной потоковой передачи

Содержимое, передаваемое потоком с широковещательной передачей, больше всего подходит для сценариев, напоминающих просмотр телевизионной программы, при этом управление и потоковая передача содержимого выполняется из пункта источника или сервера. Этот тип пункта публикации наиболее часто используется для передачи прямых потоковых данных от кодировщиков, удалённых серверов или других широковещательных пунктов публикации. Если клиент подключается к широковещательному пункту публикации, то он получает широковещательные данные, трансляция которых уже началась. Например, если в 10:00 начинается трансляция совещания в компании, то клиенты, подключившиеся в 10:18, пропустят только первые 18 минут совещания. Клиенты могут запускать и останавливать поток, однако они не могут приостановить его, перемотать вперёд, назад или пропустить.
Кроме того, на широковещательном пункте публикации можно выполнять потоковую передачу файлов и списков воспроизведения файлов. Если источником файлов служит широковещательный пункт публикации, то сервер передаёт файл или список воспроизведения как широковещательный поток. При этом в проигрывателе нельзя управлять воспроизведением, как в случае с потоком по запросу. Пользователи получают широковещательные данные прямого закодированного потока. Клиенты начинают воспроизводить уже передаваемый поток.
Обычно широковещательный пункт публикации начинает потоковую передачу сразу после запуска и продолжает её до тех пор, пока он не будет остановлен или пока не закончится содержимое.
Содержимое с широковещательного пункта публикации можно предоставлять как одноадресный или многоадресный поток. Поток с широковещательного пункта публикации можно сохранить как файл архива, а затем предложить его конечным пользователям в качестве повтора исходных широковещательных данных по запросу.

Гражданская радиосвязь

Решениями ГКРЧ России (Государственной комиссии по радиочастотам) для гражданской связи физическими и юридическими лицами на территории Российской Федерации выделены 3 группы частот:

  • 27МГц (Си-Би, «Citizens’ Band», гражданский диапазон), с разрешённой выходной мощностью передатчика до 10Вт. Автомобильныерациидиапазона 27 МГц широко используются для организации радиосвязи в службах такси, для связи водителей-дальнобойщиков;
  • 433МГц (LPD, «Low Power Device»), выделено 69 каналов длярацийс выходной мощностью передатчика не более 0,01Вт;
  • 446МГц (PMR, «Personal Mobile Radio»), выделено 8 каналов длярацийс выходной мощностью передатчика не более 0,5Вт.


Радио используется в компьютерных сетях AMPRNet, в которых соединение обеспечивается любительскими радиостанциями.

Радиолюбительская связь

Радиолюбительская связь- многогранное техническоехобби, выражающееся в проведении радиосвязей в отведённых для этой цели диапазонах радиочастот. Данное хобби может иметь направленность в сторону той или иной составляющей, например:

  • конструирование и постройка любительской приёмно-передающей аппаратуры и антенн;
  • участие в различных соревнованиях по радиосвязи (радиоспорт);
  • коллекционированиекарточек-квитанций, высылаемых в подтверждение проведённых радиосвязей и/илидипломов, выдаваемых за проведение тех или иных связей;
  • поиск и проведение радиосвязей с радиолюбительскими станциями, работающими из отдалённых мест или из мест, с которых крайне редко работают любительские радиостанции (DXing );
  • работа какими-то определёнными видами излучения (телеграфия, телефония соднополоснойиличастотной модуляцией,цифровые виды связи);
  • связь на УКВ с использованием отражения радиоволн от Луны (EME), от зонполярного сияния(«Аврора»), отметеорных потоков, с ретрансляцией через радиолюбительскиеИСЗ;
  • работа малой мощностью передатчика (QRP), на простейшей аппаратуре;
  • участие в радиоэкспедициях- выход в эфир из отдалённых и труднодоступных мест и территорий планеты, где нет активных радиолюбителей.


 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!