Шесть простых способов присоединить Arduino к Android. Управление машинкой через WiFi с помощью ESP8266 NodeMCU

В этой статье информация о том как собрать свой танк, оснащенный Web Камерой и управляемый посредством Wifi роутера.

Необходимые материалы:

  1. Web Camera
  2. Роутер TP-Link TL-MR3020
  3. Сервоприводы SG90 - 2шт
  4. Camera Platform Anti-Vibration
  5. Аккумулятор 7.2V 5000mah
  6. Аккумулятор 5V 2000mah
  7. Nano 3.0 Atmel ATmega328
  8. L298N motor driver
  9. Провода, термотрубки, USB хаб, диоды и другое.
  10. Платформа на ваш вкус, я выбрал DD1-1

Сборка нашего монстра
Настройка Роутера MR3020.
Первым делом начнем с роутера. Я долго думал что выбрать OR-WRT или CyberWRT. OR-WRT гибок в настройках, но все редактирование и внесения своих настроек осуществляется через терминал с помощи программы Putty. А так как Я боялся на тот момет работать через терминал, Я выбрал где есть графический интерфейс это CyberWRT, плюс возможно подключение через USB порт.
Для того что бы изменить прошивку нашего роутера, нужно скачать прошивку CyberWrt MR3020.

Как мы скачали, делаем следующее:

1) Включить роутер и подождать загрузки.
2) Зайти и залогиниться на 192.168.0.254 (по умолчанию admin\admin)
3) Найти в меню слева System Tools, там пункт System Upgrade и залить прошивку через веб-форму
4) Дождаться перезагрузки (порядка 4х минут)
Роутер готов к настройке.

Можно выбрать один из режимов: «Точка доступа» и «Клиент Wi-Fi сети». Для настройки режима Клиента:
- выберите режим «Клиент Wi-Fi сети»
- IP адрес Вашего устройства (по этому адресу будет доступно Ваше устройство. Постарайтесь выбрать незанятый IP. Например: 192.168.1.100)
- Маска подсети (255.255.255.0)
- Шлюз (например, IP Вашего домашнего роутера или шлюза - 192.168.1.1)
- Тип шифрования (тип шифрования, используемый в Вашей домашней сети)
- Пароль (пароль, для доступа к Вашей домашней сети)

Если сделали все правильно, то у вас пойдет RSS строка в нижней части экрана.

Когда все заработала, у вас появятся раздел модули, там вы находите модуль "РОБОТ". Устанавливайте. Готово.

Подключение L298N, Arduino Nano, MR3020, Камера и другое

На картинке все наглядно показано, но на всякий случай напишу.

Вывод Arduino DIGITAL 4 - к IN1 пину модуля.
Вывод Arduino DIGITAL 5 - к IN2 пину модуля.
Вывод Arduino DIGITAL 6 - к IN3 пину модуля.
Вывод Arduino DIGITAL 7 - к IN4 пину модуля.
Вывод Arduino GND - к GND клеме модуля.
GND клема модуля - Минус аккумулятора.
7.2V клема модуля - Плюс аккумулятора.
RM клема модуля - Правый моторчик.
LM клема модуля - Левый моторчик.
USB порт Arduino - Подключаем к USB хаб
Web Камера - Подключаем к USB хаб
USB хаб - Подключаем к USB роутера

Питание так скажем логистики, осуществляется вторым аккумулятором. Емкость 2000 mA/h 5v, дабы не спалить роутер. Да и с двумя аккумуляторами робот стабильней работает. Так вот, его мы подключаем просто в разъем микро USB. Через USB хаб который подключен к роутету питанию уже получает и камера и наша ардуинка.

Скетч для Arduino Nano
Вам необходима скачать библиотеку CyberLib , она предназначена только для Atmega 328.

/* Версия 1.5 WIFI Tanka на DD1-1 Реализовано: 1) Движение камеры по X и Y 2) Гудок 3) Фары 4) Звук при включении */ #include // Подключаем библиотеку #include // Подключаем библиотеку сервоприводов Servo myservo1; Servo myservo2; long previousMillis; // Нужно для таймера int LedStep = 0; // Счетчик для LED int i; #define robot_go {D4_High; D5_Low; D6_Low; D7_High;} #define robot_back {D4_Low; D5_High; D6_High; D7_Low;} #define robot_stop {D4_Low; D5_Low; D6_Low; D7_Low;} #define robot_rotation_right {D4_High; D5_Low; D6_High; D7_Low;} #define robot_rotation_left {D4_Low; D5_High; D6_Low; D7_High;} #define LED_ON {D13_High;} #define LED_OFF {D13_Low;} #define Headlamp_ON {D8_Low;} #define Headlamp_OFF {D8_High;} #define Buzzer {tone(11, 494, 500);} #define init {D4_Out; D5_Out; D6_Out; D7_Out; D8_Out; D13_Out;} uint8_t inByte; void setup() { myservo1.attach(9); // Подключение сервоприводов к порту myservo2.attach(10); // Подключение сервоприводов к порту D11_Out; D11_Low; // Динамик Headlamp_OFF; // Фары выкл по умолчанию for(uint8_t i=0; i<12; i++) beep(80, random(100, 2000)); //звуковое оповещение готовности робота init; // Инициализация портов //Buzzer; // Инициализация портов динамика UART_Init(57600);// Инициализация порта для связи с роутером wdt_enable (WDTO_500MS); } void loop() { unsigned long currentMillis = millis(); // Обновление таймера if (LedStep == 0 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. previousMillis = currentMillis; // обновление таймер LED_ON; // Включить LedStep = 1; // Счетчик шагов } if (LedStep == 1 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. previousMillis = currentMillis; // обновление таймер LED_OFF; // Выключить LedStep = 2; // Счетчик шагов } if (LedStep == 2 && currentMillis - previousMillis > 500){ // Задержка 0,5 сек. LedStep = 0; // Счетчик шагов } if (UART_ReadByte(inByte)) //Еесли что то пришло { switch (inByte) // Смотрим какая команда пришла { case "x": // Остоновка робота robot_stop; break; case "W": // Движение вперед robot_go; break; case "D": // Повопорт влево robot_rotation_left; break; case "A": // Поворот вправо robot_rotation_right; break; case "S": // Движение назад robot_back; break; case "U": // Серво поднимается myservo1.write(i -= 20); break; case "J": // Серво опускается myservo1.write(i += 20); break; case "H": // Серво поворачивается влево myservo2.write(i += 20); break; case "K": // Серво поворачивается вправо myservo2.write(i -= 20); break; case "Y": // Серво поворачивается 85 myservo1.write(85); myservo2.write(85); break; case "F": // Включить фары Headlamp_ON; break; case "V": // Выключить фары Headlamp_OFF; break; case "I": // Гудок Buzzer; break; } } wdt_reset(); }

Внесение изменений в роутер
Для того что бы управлять камерами были внесены изменения в библиотеку роутера. Вам нужно будет скачать измененный код и заменить исходные файлы ним.

Передавать прошивки, обновления и прочие данные путём паяльника и проводов – не лучшее решение для Ардуино. Однако микроконтроллеры для arduino wi-fi стоят недёшево, да и нужда в них есть далеко не всегда, отчего пользователи предпочитают их не использовать в своих проектах без надобности.

Но вот очередной китайский продукт захватил рынок, wi-fi jammer esp8266 своими руками можно присоединить к плате Ардуино или другой системе, и вы получите стабильное соединение с рядом других преимуществ. Так давайте разберёмся с arduino uno wi-fi, и стоит ли покупать данный модуль, а также, что вообще собой представляет подобный микроконтроллер на wi-fi ардуино.

Сейчас большая часть пользователей ардуино уже не беспокоится о цене подобных девайсов, хотя ещё 3 года назад arduino wi-fi модуль считался роскошью. Всё это благодаря wi-fi jammer esp8266, производители которого ввели на рынок совершенно новый продукт, поражающей своей функциональностью и, одновременно с тем, являющийся достаточно дешёвым, что внесло весомую лепту и создало конкуренцию в этом направлении.

Таким образом, arduino wi-fi esp8266 сейчас считается самым доступным модулем на рынке, как и все его собратья. Так, цена на зарубежных площадках стартует от 2-х долларов, что позволяет пачками закупать данные модули и не перепрошивать их тысячу раз, перепаивая контакты, чтобы сохранить работоспособность.

Сначала данный wi-fi модуль ардуино использовался, в основном, как arduino wi-fi shield, так как являлся наиболее дешёвым вариантом и ничем не уступал оригинальному. Устройство действительно практически легендарное, ведь весомых минусов за его стоимость не найти. Имеется множество библиотек, в том числе и пользовательских, а также поддерживает работу через Serial шины и простейшие АТ и АТ+ команды. Благодаря этому никакой семантики пресловутого С99, как это часто бывает с другими сторонними микроконтроллерами, изучать не нужно.

Соответственно, даже новичок разберётся за секунды, а профессионал сможет применить уже заготовленные библиотеки. Среди других достоинств отмечается:

  1. Процессор на 160 МГц, однако он 32-битный, что накладывает определённый отпечаток на производительность. Но стоит помнить, что модуль всё же применяется в связке с платами Ардуино, которые сами по себе режут высокие частоты и съедают большую часть ресурсов неизвестно для чего.
  2. Производитель, выпустивший wi-fi модуль esp8266, интересные проекты на этом не закончил, и сейчас имеется целая линейка микроконтроллеров проверенного качества.
  3. Современные стандарты защиты сети. Конечно, WPA и WPA2 уже давно не столь безопасны, как хотелось бы, но их наличие не может не радовать в таком дешёвом контроллере.
  4. 16 портов вывода, в том числе 10-битный, позволяющий поэкспериментировать с платой.

Что ещё важнее, с коробки вас ждёт постоянная память до 4 мегабайт, в зависимости от типа платы, а это в разы упрощает работу с большими библиотеками и даже некоторыми медиа-файлами. Ведь на большинстве плат ардуино и 1 мегабайт считается непозволительной роскошью.

Характеристики esp8266 wi-fi безусловно радуют, особенно в сравнении с его более дорогими конкурентами, но у пользователя, не имевшего ранее опыта с данными платами, возникнет вопрос о том, как же его подключить. Дело в том, что модуль имеет гораздо больше пинов, чем привыкли видеть новички, а, соответственно, у тех начинается паника. Однако, если разобраться в ситуации, то на деле в этом нет ничего сложного. Достаточно запастись припоем и паяльником и просто почитать инструкцию.

Как подключить Wi-Fi модуль к Arduino

Давайте же рассмотрим подключение esp8266 esp 12e и что такое esp8266 мост wi-fi uart. Ведь именно подключение и настройка модуля вызывают больше всего вопросов.


В первую очередь определитесь, какая версия микроконтроллера у вас на руках. В первой встраиваются светодиоды около пинов, а на второй, которую стали выпускать совсем недавно, сигнальные огни находятся около антенны.

Перед подключением стоит подгрузить последнюю прошивку, позволяющую увеличивать скорость обмена пакетами до 9600 единиц информации в секунду. А проверять соединение мы будем через кабель usb-ttl и соответствующий терминал от CoolTerm.


Пины для подключения вышеописанного кабеля стандартные, а вот питание идёт через 3.3 вольтовый пин с Ардуино. Важно помнить, что максимальную силу тока, которую подаёт плата, невозможно поставить выше 150 мА, а esp8266 esp 07 и esp8266 witty cloud wi-fi модуль для arduino требуют 240 Ма.

Однако, если другого источника тока нет, можете использовать и стандартный вариант от Ардуино, но мощность платы пострадает. Хотя, при не сильной загрузке, достаточно и 70 мА, будьте готовы к внезапным перезагрузкам микроконтроллера в пиковые моменты нагрузки и пишите софт соответственно, чтобы он фильтровал и разбивал файлы, не перегружая плату.


Еще один вариант подключения ниже. Важно - контакты RX-TX соединяются перекрестием. Так как уровни сигналов модуля ESP8266 3.3В, а Arduino 5В, нам нужно использовать резистивный делитель напряжения для преобразования уровня сигнала.

Прописываем Wi-Fi модуль в Arduino

Как известно, при должном опыте можно и шилд esp8266 ex 12e сопрячь со смартфоном, но у новичков и прописка esp8266 esp 12 в системе Ардуино вызывает трудности. На деле достаточно подключить модуль и проверить его работоспособность, скинув несколько штатных команд АТ через меню отладки.

Например, можно добавить мигание штатным светодиодом (для схемы подключения выше):

#define TXD 1 // GPIO1/TXD01 void setup() { pinMode(TXD, OUTPUT); } void loop() { digitalWrite(TXD, HIGH); delay(1000); digitalWrite(TXD, LOW); delay(1000); }

Как только плата подтвердит, что видит микроконтроллер в системе, можно начинать полноценную работу с ним. Однако стоит отметить, что если сама плата ардуино используется в проекте лишь для подключения данного контроллера – это иррационально.

Достаточно USB-UART преобразователя, так как esp8266 не использует «мозги» ардуино, а своей флеш-памяти ему вполне хватит для хранения пары базовых библиотек и прошивок. Соответственно, тратиться лишний раз на вспомогательную плату нет никакого смысла, если вы можете просто подпаять его к преобразователю и дальше использовать в проекте. При этом, подключив вспомогательный источник питания и не беспокоясь, что данные перестанут передаваться в самый ответственный момент из-за недостатка мощности системы.

Важное замечание! Для последней схемы скетч загружаем в Arduino как обычно, но так как модуль ESP8266 подключен к контактам 0 и 1, программирование становится невозможным. Компилятор будет показывать ошибку. Отсоедините провода идущие к ESP8266 от контактов 0 и 1, произведите программирование, а после верните контакты на место и нажмите кнопку сброса в Arduino.

Добрый день!

Недавно заинтересовался идеей создания «умного дома». Так как из необходимых компонентов в моем распоряжении пока что имеются только arduino и телефон на андроиде, решено было начать с создания пульта управления и связи его с остальной частью системы.

Моё видение системы выглядит так:

Думаю стоит совместить домашний и веб-серверы, прикупив статический айпишник, но на первое время сойдет и так. Начнем с простого – научимся удаленно управлять светодиодом и LCD-дисплеем.

Web-server
На веб-сервере создаем БД с двумя таблицами – leds и texts. Таблица leds содержит 2 поля – id и status. Она содержит одну запись с актуальным состоянием светодиода. Таблица texts содержит 2 поля – id и text. Она также содержит одну запись с текстом, который в данный момент отображается на LCD-дисплее.

Теперь напишем пару скриптов, которые будем вызывать с телефона и передавать информацию для БД. Пишем на php.

Скрипт led.php (управление светодиодом):

Скрипт msg.php (управление LCD-дисплеем):

Я думаю, что из комментариев ясно, как работают эти скрипты. Это все, что находится на веб-сервере. Теперь перейдем к домашнему серверу (или говоря проще, компьютеру, к которому подключен ардуино).

Домашний сервер
На нем будет постоянно работать программка (можно даже назвать ее – демон), посылающая запросы к БД и при изменении находящейся там информации, посылающая на COM-порт с ардуино соответствующую команду. Программку напишем на языке Processing:

Import processing.serial.*; //библиотека для работы с COM-портом import de.bezier.data.sql.*; //библиотека для работы с БД MySQL Serial port; MySQL dbconnection; int prevLEDState = 0; //предыдущее состояние светодиода String prevS = ""; //предыдущий текст, отпаврленный на LCD-дисплей void setup() { port = new Serial(this, "COM4", 9600); //инициализируем COM-порт 4 (на не прицеплена ардуина), скорость обмена - 9600 бод port.bufferUntil("\n"); String user = "имя_пользователя"; String pass = "пароль"; String database = "имя_бд"; dbconnection = new MySQL(this, "ваш_домен.ru", database, user, pass); //соединяемся с БД dbconnection.connect(); } void draw() { //следим за информацией о светодиоде в БД dbconnection.query("SELECT * FROM leds WHERE id = "1""); //делаем запрос к таблице leds while (dbconnection.next()) //обходим выборку из результата запроса { int n = dbconnection.getInt("status"); //получаем значение из поля status if (n != prevLEDState) //если оно изменилось по сравнению с предыдущем "тактом" работы программы, то посылаем команду на COM-порт { prevLEDState = n; port.write("1"); //первый переданный символ будет означать код выполняемой операции: 1 - управление светодиодом, 2 - управление LCD-дисплеем port.write(n); } } //следим за информацией о LCD-дисплее в БД dbconnection.query("SELECT * FROM texts WHERE id = "1""); //делаем запрос к таблице texts while (dbconnection.next())//обходим выборку из результата запроса { String s = dbconnection.getString("text"); //получаем значение из поля text if (s != prevS) { prevS = s; port.write("2"); port.write(s); } } delay(50); //делаем задержку в 50 мс, чтобы не слать запросы непрерывно }
Пояснять этот код я тоже не стану, все и так понятно.
Еще 1 важный момент. Чтобы программа с нашего компьютера могла обращаться к БД, расположенной на удаленном сервере, надо это разрешить. Вводим наш ip в список разрешенных:

Приложение для телефона
Телефон у меня андроиде, для него и пишем. Не буду сильно вдаваться в подробности (очень хорошо как о установке среды программирования, так и о написании первого приложения написано вот в этой статье - ссылка).

Внешний вид приложения выглядит довольно скромненько, но в данном случае это не главное:

Приведу только отрывки кода программы под Android. Функция, вызывающая скрипт, управляющий светодиодом:
public void changeLED() { try { URL url1 = new URL("http://ваш_домен.ru/led.php"); HttpURLConnection urlConnection = (HttpURLConnection) url1.openConnection(); try { InputStream in = new BufferedInputStream(urlConnection.getInputStream()); } finally { urlConnection.disconnect(); } } catch (Exception e) { } }
Функция, отсылающая текст для отображения на LCD-дисплее:
public void submitMsg() { final EditText tt = (EditText) findViewById(R.id.editText1); try { URL url1 = new URL("http://ваш_домен.ru/msg.php?msg="+tt.getText()); HttpURLConnection urlConnection = (HttpURLConnection) url1.openConnection(); try { InputStream in = new BufferedInputStream(urlConnection.getInputStream()); } finally { urlConnection.disconnect(); } } catch (Exception e) { } }
Ну и главная функция, в которой происходит привязка обработчиков событий к кнопкам:
public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); final Button btn1 = (Button) findViewById(R.id.button1); btn1.setOnClickListener(new Button.OnClickListener() { public void onClick(View v) // клик на кнопку { changeLED(); } }); final Button btn2 = (Button) findViewById(R.id.button2); btn2.setOnClickListener(new Button.OnClickListener() { public void onClick(View v) // клик на кнопку { submitMsg(); } }); }
И еще один важный момент – добавить разрешение приложению на выход в интернет. Для этого в файл AndroidManifest.xml (он находится в директории нашего андроид-приложения) надо добавить строчку:

Экспортируем наше приложение в файл APK и устанавливаем на телефон. Пульт управления умным домом готов!

Arduino
Ну и наконец последнее, но не по значению – подключение ардуино и ее прошивка. Схема подключения LCD-экрана и светодиода к Arduino Uno выглядит следующим образом:

Резистор берем на 220 Ом. Более подробно про подключение LCD-экрана можно прочитать здесь - ссылка

А вот как это все выглядит в реальности:

Правда красиво?

Задача ардуино состоит в прослушивании того, что программа-демон на домашнем сервере посылает на COM-порт, к которому и подключена ардуино (хотя фактически подключение идет по USB-кабелю, но компьютер распознает его как последовательный порт). После получения каких-либо данных с компьютера, контроллер по первому символу переданной информации распознает код команды (т.е. чем сейчас предстоит управлять – LCD-дисплеем или светодиодом). Далее в зависимости от кода и следующей за ним информации выполняется либо включение/выключение светодиода, либо вывод на дисплей переданного сообщения. Итак, вот собственно код:

#include //встроенная библиотека для работы с LCD-дисплеем boolean isExecuting = false; //переменная, отражающая, что уже идет выполнение какой-то команды //Cразу поясню, для чего это нужно. За каждый "такт" цикла loop ардуино считывает с COM-порта код одного символа. //Поэтому строка будет передаваться за несколько тактов. При этом перед каждой из двух возможных команд (смена состояния светодиода и передача текста на дисплей) //передается код этой команды (1 и 2 соответственно). Чтобы отделить коды команд от передаваемой далее информации (состояния светодиода или текста для дисплея), //используется эта переменная. LiquidCrystal lcd(4,5,10,11,12,13); //инициализация дисплея int ledPin = 8; //номер пина ардуино, на к которому подсоединен светодиод int prevLEDStatus = 0; //предыдущий статус светодиода (вкл/выкл) int newLEDStatus = 0; //новый статус светодиода int cmd = 0; //код выполняемой команды void setup() { Serial.begin(9600); //инициализация COM-порта (9600 - скорость обмена в бодах) pinMode(ledPin,OUTPUT); //инициализация 8-го пина ардуино как выхода lcd.begin(20,4); //инициализация LCD-дисплея (4 строки по 20 символов) } void loop() { if (Serial.available() > 0) //если на COM-порт пришла какая-то информация { if (isExecuting == false) //если в данный момент не идет выполнение никакой команды { cmd = Serial.read() - "0"; //считываем код выполняемой команды isExecuting = true; //теперь переменная показывает, что началось выполнение команды } if (cmd == 1) //управление светодиодом { newLEDStatus = (int) Serial.read(); //считываем новый статус светодиода if (newLEDStatus != prevLEDStatus) //если он изменился по сравнению с текущим статусом, то меняем текущий статус { digitalWrite(ledPin,newLEDStatus); prevLEDStatus = newLEDStatus; } } else //управление дисплеем { if (isExecuting == false) //если в данный момент не идет выполнение никакой команды { lcd.clear(); //очищаем экран } else { lcd.print((char)Serial.read()); //выводим символ на дисплей } } } else //если на COM-порт не пришла никакая информация { delay(50); //делаем задержку в 50 мс if (Serial.available() <= 0) //если информации по-прежнему нет isExecuting = false; //считаем, что никакая команда не выполняется } }
Я думаю, пояснений он не требует, так как я очень подробно все расписал в комментариях. Единственное, что стоит отметить, так это некоторые ограничения на передаваемые для вывода на дисплей строки. Они не должны содержать пробелов (это ограничение накладывается несовершенством моего алгоритма) и не должны содержать кириллицы (т.к. она поддерживается не всеми дисплеями, а если и поддерживается, то требует передачи кодов символов в своей собственной кодировке, преобразовывать символы в которую нет никакого желания).

Заключение
Ну вот и все. Оказалось, что это довольно просто.
Видео того как все работает:

В этой статье представлена пошаговая инструкция, которая поможет вам самостоятельно создать приложение для Android-смартфона, предназначенное для управления чем-либо через Bluetooth. Для демонстрации мы подробно разберем пример мигания светодиодом на Arduino по командам с телефона или планшета. В результате выполнения наших инструкций вы научитесь делать вот так:

Для управления домашним роботом достаточно добавить кнопок и обработать их команды на стороне Arduino.

Что для этого потребуется

  1. Любая Arduino-совместимая плата
  2. Bluetooth-модуль
  3. Устройство на котором установлена ОС Android

В качестве Bluetooth-модуля лучше всего использовать HC-05. Его легко купить в китайском интернет магазине или на eBay. Модуль питается от 3.3 В, но его линии I/O могут работать и с 5-вольтовой логикой, что позволяет подключать его UART к Arduino.

Bluetooth-модуль HC-05

Подключение Bluetooth-модуля к Arduino

Так теперь нам нужно подключить нашу Arduino с Bluetooth. Если на Arduino нет вывода с 3.3В, а только 5В то нужен будет поставить стабилизатор чтобы снизить питание. Назначение выводов HC-05 легко найти в интернете. Для использования рекомендуем вам сделать плату с выведенными линиями питания, Rx и Tx. Подключение к Arduino необходимо производить в следующем порядке:

  • вывод Arduino 3.3В или (5В через стабилизатор!) — к 12 пину модуля Bluetooth
  • вывод Arduino GND — к 13 пину модуля Bluetooth
  • вывод Arduino TX — к 2 пину модуля RX Bluetooth
  • вывод Arduino RX — к 1 пину модуля TX Bluetooth

После подключения необходимо проверить работоспособность Bluetooth модуля. Подключим Светодиод к 12 выводу Arduino и загрузим на плату следующий скетч:

Char incomingByte; // входящие данные int LED = 12; // LED подключен к 12 пину void setup() { Serial.begin(9600); // инициализация порта pinMode(LED, OUTPUT); //Устанавливаем 12 вывод как выход Serial.println("Press 1 to LED ON or 0 to LED OFF..."); } void loop() { if (Serial.available() > 0) { //если пришли данные incomingByte = Serial.read(); // считываем байт if(incomingByte == "0") { digitalWrite(LED, LOW); // если 1, то выключаем LED Serial.println("LED OFF. Press 1 to LED ON!"); // и выводим обратно сообщение } if(incomingByte == "1") { digitalWrite(LED, HIGH); // если 0, то включаем LED Serial.println("LED ON. Press 0 to LED OFF!"); } } }

RC машинка может быть WiFi машинкой...?

RC машинка это хорошо, но дешевые RC машинки имеют ограниченный диапазон и управляются только определённым пультом поставляемым в комплекте.

Я купил RC джип 4х4 с гибкой подвеской и внедорожными шинами примерно за 30 долларов. Поигравшись с машинкой я решил, что её можно улучшить при помощи Wi-Fi и Android. Потратив немного времени, я полностью удалил плату из машинки. Я замерял напряжения на этой плате и разработал систему управления двигателем при помощи Arduino. Оригинальная система управления не использует ШИМ для контроля скорости. Машинка рассчитана на переезд через препятствия на очень низкой передаче, и как следствие очень медленно. В моей же схеме используется ШИМ.

Я использую Arduino уже несколько месяцев. Я также приобрел asynclabs WiFi Sheild для Duemilanoe Arduino, чтобы экспериментировать с WiFI. Он поставляется с библиотекой, устанавливаемой в Arduino IDE. Я смог сделать программу, которая позволяет управлять двигателями и направлением движения при помощи WiFi.

При помощи Visual Studio я разработал окно программы, которая подключается к серверу автомобиля и дает ему команды. Затем после нескольких попыток я написал приложение для Android, которое использует акселерометр для управления машинкой.

Инструменты и элементы

Это общий список инструментов и элементов, которые использовались в этом проекте. В документации Eagle указаны точные технические характеристики используемых компонентов.

Мультиметр
Паяльник
Припой
Отвертки
Раствор для травления плат
Фольгированый стеклотекстолит
Плоскогубцы
Arduino
AsyncLabs WiFi Sheild
Разъёмы RJ45
Драйвер двигателя с H-мостом
Конденсаторы

Драйвер двигателей

Используя Eagle, я разработал эту схему и сделал печатную плату для неё. Она функционирует как драйвер двигателей и регулятор их мощности для Arduino.
Это позволяет использовать стандартный 7.2В аккумулятор для питания основных и рулевых двигателей и Arduino.

В этой схеме используется двойной интегральный драйвер с Н-мостом SN754410 для управления двигателями. Выводы управления драйвера подсоединены к кабелю RJ45, который подключается к AsyncLabs WiFi Sheild.

Arduino Shield

Используя библиотеку SparkFun в Eagle я разработал Arduino Shield, через который будут проходить контакты с WiFi Shield и подключаться к драйверу двигателя через разъем RJ45 и 2 винтовые клеммы.

Цоколевка контактов RJ45 очень важна. Ошибка в подключении может привести к непредсказуемым результатам и придётся переделывать плату.

Травление печатных плат

Эта тема была раскрыта много раз, и я не буду подробно описывать её.
Я использую , и он меня устраивает, а с опытом дает прекрасные результаты.

Для крепления платы к корпусу использовались липучки. Мне повезло, т.к. в моей машинке было много места для электроники под трубчатым каркасом.
Я забыл сфотографировать соединение платы драйвера двигателя с остальными платами, однако он хорошо стал и не занял много места в корпусе.

Программа

Мой код может быть не достаточно эффективен, но он работает.

Машинка

Мне удалось собрать CarServer на основе примера SocketServer, который я получил вместе с Wifi Sheild AsynLabs.
Вам необходимо будет ввести информацию о своей беспроводной сети в код Arduino. Когда машина включилась, дайте ей 15-45 секунд, чтобы установить соединение с маршрутизатором. Красный светодиод на WiFi Shield означает, что соединение установлено.

Я сделал эту программу при помощи C # и MS Visual Studio 2008. Я сделал хорошее окно, и автомобилем можно управлять стрелочками.

Почему бы не управлять машинкой с телефона?

Такая мысль появилась у меня примерно через неделю после покупки DroidX. Я начал экспериментировать и в конечном итоге использовал Android SDK. Я нашел аналогичные приложения, где для управления используется акселерометр. Смотря на эти приложения написал свое.

Вставить IP и порт, указанные в коде Arduino. Держите телефон горизонтально. Затем наклоните его от себя, чтобы ехать вперед и на себя, чтобы ехать назад. Используйте телефон как руль.
Это мое первое крупное приложение для Android. В нем до сих пор есть некоторые ошибки, но в основном оно работает нормально.

Рулите во дворе машинкой 4x4 с WiFi!

Я отлично провел время, создавая этот проект. Я получил много знаний и новых навыков, и теперь у меня есть машинка 4х4, которой можно управлять с телефона.

Мне нужна камера для установки за лобовым стеклом, чтобы смотреть куда ехать. Она должна быть с низким энергопотреблением, а также передавать видео сама по себе. (Я думаю, что Arduino справится с этим).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер двигателей
IC1 Микросхема SN754410 1 В блокнот
Линейный регулятор 5 В 1 В блокнот
Биполярный транзистор

2N3904

1 В блокнот
C1, C2 Электролитический конденсатор 2 В блокнот
Разьем 2 вывода 7 В блокнот
Разьем 8 выводов 1 В блокнот
Arduino Shield
U1 Плата Arduino 1 В блокнот
Т1 Биполярный транзистор

2N3904

1 В блокнот
R1 Резистор 1 В блокнот
U$3 Подстроечный резистор 1 В блокнот
Разьем 2 вывода 2


 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!