Типы сенсорных экранов. Развитие сенсорных технологий

Резистивная технология

Плюс: точность и высокая чувствительность. Минус: невысокая яркость и недопустимость прикосновения острыми предметами.

Мкостная технология

Плюс: большое разрешение, малое время отклика, хорошее качество изображения и большой ресурс. Минус: реагирует только на контакт с пальцем.

Технология ПАВ (поверхностные акустические волны)

Плюс: высокая чувствительность, большая яркость и малая цена. Минус: чувствительность к воздействию внешних факторов, то есть колебания температуры и давления влияют на их работу.

Инфракрасные мониторы

Такая техника является самой надёжной и долговечной. Количество прикосновений, перепады температуры, погодные условия – не влияют на работу экрана. Минус: реагируют на любые прикосновения и на попадание солнечных лучей. Но этот недостаток не имеет особой значимости, стоит лишь установить защитную программу, требующую подтверждения выполнения операции.
Как видим, сенсорные мониторы, хоть и не лишены недостатков - достаточно хороши для определённых целей.

Перспективные конструкции и технологии мониторов

Технология E-Ink

В наше время большинство пользователей ПК все еще предпочитают читать текст на бумаге. Кроме привычки воспринимать информацию с листа бумаги, есть еще и объективные факторы, такие как количество отраженного от дисплея света (характеризуется коэффициентом отражения) и контрастность (отношение интенсивностей отражаемых световых потоков от белых и черных участков изображения).
Даже в последних моделях мониторов коэффициент отражения и контрастность примерно в два раза ниже, чем, скажем, у страницы книги. Вдобавок печатные издания имеют более широкий угол обзора и им можно придать ту форму, которая удобнее для чтения. В общем, читать текст на бумаге, конечно, удобнее (видимо, именно поэтому даже с приходом Интернета бумажные издания продолжают существовать).
Поэтому при производстве мониторов ПК, возможно, получит распространение технология E-Ink (Electronic Ink - "Электронные чернила "), разрабатываемая компаниями Philips, E Ink и лабораторией Bell Labs.
Bell Labs представила общественному вниманию гибкий пластиковый лист, способный отображать простейшие символы графики. Толщина новинки - не более миллиметра, что позволяет сравнивать его с листом бумаги, благо он имеет довольно высокую эластичность и достаточно прочен. Сейчас размеры точки на таком листе не очень маленькие, но в будущем планируется уменьшить его размер до нескольких микрон (как в современных мониторах или даже меньше).
Использование таких технологий позволит производить не просто плоские экраны , но имеющие возможность сворачиваться и/или принимать произвольную форму. Основная проблема в этих технологиях - чем заменить стеклянную подложку? Если применить пластик, то гибкость обеспечена, однако он, в отличие от стекла, пропускает кислород и воду, присутствие которых несовместимо с электролюминесцентными свойствами органических диодов. Так что пока гибкие OLED-дисплеи "живут" не больше двух-трех недель, но исследовательские лаборатории рапортуют, что через несколько лет можно будет начать их массовое производство.
Основной элемент дисплеев, создаваемых E - Ink, - матрица микрокапсул, каждая из которых содержит положительно заряженные частицы белого цвета и отрицательно заряженные - черного. При подведении к капсуле отрицательного заряда белые (положительно заряженные) частицы под действием кулоновских сил отталкиваются и поднимаются в верхнюю часть капсулы, где их видит наблюдатель. А при подведении положительного заряда верх капсулы окрашивается в черный цвет. Такой способ получения изображения обеспечивает высокую контрастность цвета и широкий угол обзора . Кроме того, сейчас разрабатываются технологии, позволяющие использовать в качестве подложки для слоя из таких микрокапсул совершенно произвольные по составу и форме поверхности. Ведутся работы и по созданию цветных дисплеев на основе "электронных чернил", в которых принцип получения цвета будет сходен с используемой в ЖК-мониторах системой красных, желтых и зеленых светофильтров

Первые сенсорные экраны создавались с использованием прозрачной резистивной пленки. Эта технология широко распространена и сейчас. Существуют 4, 5 и 8-проводные резистивные сенсорные экраны. Основу конструкции 4-проводного экрана составляют две прозрачные пленки из полиэстера (polyester), майлара (mylar), пластизола (plastisol, PL) или полиэтилентерефталата (polyethylene terephtalate, PET), находящиеся друг напротив друга и разделенные микроскопическими шариками-изоляторами. Внутренние, обращенные друг к другу поверхности пленок покрыты прозрачным токопроводящим (резистивным) составом на основе двуокиси индия и олова (indium tin oxide - ITO). Для определенности назовем один из резистивных слоев задним, а другой, расположенный ближе к наблюдателю, передним (рис.3).

Контакт с этими слоями обеспечивается посредством двух пар металлизированных полосок-электродов. Первая пара расположена вертикально, по краям заднего слоя, а вторая пара - горизонтально, по краям переднего слоя. Все четыре электрода подключены к микроконтроллеру, который последовательно определяет координаты точки касания по горизонтали и вертикали. Работу контроллера в первом случае можно приблизительно описать следующим образом. На вертикальные электроды заднего резистивного слоя подается постоянное напряжение, например, 5 В, и от одного электрода к другому протекает некоторый ток I. При этом на каждом горизонтальном участке заднего резистивного слоя ток создает падение напряжения, пропорциональное длине участка.

При касании экрана передний резистивный слой деформируется и касается заднего слоя. В этом случае передний слой выполняет роль щупа, определяющего напряжение на заднем слое в точке касания. Горизонтальные электроды переднего слоя замыкаются микроконтроллером накоротко (для уменьшения влияния сопротивления переднего резистивного слоя) и суммарный сигнал 5 поступает через буферный каскад, (имеющий большое входное сопротивление), на аналого-цифровой преобразователь (АЦП). Напряжение на входе АЦП определяет положение точки касания по горизонтали. Для определения координаты по вертикали передний и задний резистивные слои «меняются местами»: на горизонтальные электроды переднего слоя микроконтроллер подает постоянное напряжение, а электроды заднего слоя замыкает, (этот слой используется как щуп). Определение координат точки касания производится микроконтроллером с высокой скоростью - более ста раз в секунду. Слабым звеном 4-проводного экрана является передняя пленка из полиэстера. Многократные деформации приводят к разрушению проводящего слоя, в результате чего уменьшается точность определения координат. Производители гарантируют стабильную работу устройства при количестве нажатий в одной точке до миллиона.

8-проводные экраны отличаются от 4-проводных незначительно - для повышения точности определения координат введены дополнительные 4 проводника, которые соединены с теми же самыми двумя парами металлизированных электродов, расположенных по краям проводящих покрытий. Однако надежности экрана в целом это не увеличивает.

А вот 5-проводный резистивный экран обладает улучшенными характеристиками. Переднее резистивное покрытие, подвергающееся деформации при касании, заменено проводящим и используется исключительно в качестве щупа. А заднее резистивное покрытие наносится не на пленку полиэстера, а на стекло. Поэтому к названию 5-проводных экранов часто добавляют аббревиатуру FG (Film on Glass). Четыре электрода, которые создают вертикальный и горизонтальный градиент напряжений, находятся на заднем резистивном слое. Пятый электрод является выводом переднего проводящего слоя-щупа. Повреждение этого слоя при деформации практически не влияет на точность определения координат, поэтому такие экраны более надежные. Считается, что они выдерживают до 35 миллионов нажатий в одной точке. Кроме того, 5-проводные экраны, в отличие от 4 и 8-проводных, допускают установку на сферические или цилиндрические экраны отображающих устройств на основе ЭЛТ.

Резистивная технология позволяет определять координаты точки касания с высокой точностью. Теоретически, применение 12-разрядных АЦП позволяет различать 4096х4096 точек по горизонтали и вертикали. На практике разрешающая способность вдвое ниже, однако этого вполне достаточно при использовании резистивного экрана, например для рисования или ведения записей в электронном блокноте.

К достоинствам резистивных экранов следует отнести: возможность активации (касания) любым предметом (пальцем, банковской карточкой или тупым концом стилуса), стойкость от пыли, влаги, конденсата, паров, загрязнения поверхности, что позволяет им надежно работать, когда другие типы экранов выходят из строя; низкую стоимость и простоту установки.

Основные недостатки - низкая прозрачность (примерно 75% для 4 и

8-проводных экранов и до 85% - для 5-проводных), недостаточная механическая прочность (экран можно повредить острым предметом),

необходимость периодической калибровки экрана, плохая работа при низких температурах, (что связано с уменьшением эластичности передней деформируемой пленки). Кроме того, резистивный экран способен распознавать только одну точку касания, то есть если при вводе текста ладонь руки давит на экран, то координаты вычисляются неверно. И лишь совсем недавно резистивные панели от фирмы Elo Touch “научились” распознавать

несколько одновременных нажатий, правда на програмном уровне. Резистивные экраны распространены очень широко. Они применяются там, где не требуется высокое качество цветопередачи и исключена возможность актов вандализма, например, в POS (point of sail)-системах (кассовые терминалы), карманных компьютерах, GPS-навигаторах, сотовых телефонах, промышленном и медицинском оборудовании, сложных измерительных приборах и других подобных устройствах.

Конструкция резистивной интерактивной доски включает в себя жёсткую подложку и гибкую пластиковую мембрану. Пространство между подложкой и мембраной заполнено изоляторами, которые равномерно распределены по активной области доски и надёжно изолируют проводящие поверхности. При нажатии на интерактивную доску эти два слоя соприкасаются, что вызывает изменение уровня сопротивления, который регистрируется устройством.

Точка нажатия будет распознаваться интерактивной доской как клик мыши. В один и тот же момент времени возможна регистрация только одной точки касания пальцем, стилусом или любым другим подходящим предметом. Исключение представляют резистивные доски двойного касания, под единой пластиковой мембраной которой находятся две жёсткие подложки. Работа с данными устройствами интуитивно понятна, однако есть свои нюансы: 1) нажатие должно быть достаточно сильным, иначе сигнал будет прерываться; 2) при длительном использовании может происходить залипание пластиковой мембраны; 3) для того, чтобы использовать интерактивную доску как маркерную, нужно использовать специальные маркеры, т.к. она с трудом поддаётся очистке. Примеры компаний-производителей: , QOMO, IQBoard.

Ёмкостная (электростатическая) технология

Внешний слой сенсорного экрана такого типа является проводником статического электричества, внутренняя сторона представлена сеткой электродов. В процессе работы контроллер подает на них импульсы слабого переменного тока.

При касании происходит утечка тока. Величина тока утечки обратно пропорциональна расстоянию от точки нажатия до электрода. Сравнивая величины тока утечки через каждый из четырех электродов, контроллер рассчитывает координаты точки нажатия. Яркие представители подобных устройств: планшеты iPad, Samsung и т.д. Эти устройства распознают несколько одновременных касаний и различные жесты, однако вследствие необходимости обеспечения электрического контакта между поверхностью и телом человека работа с ними с помощью других предметов (в т.ч. в перчатках) не представляется возможной.

Инфракрасная технология

По периметру интерактивной доски установлены ИК-сенсоры, которые формируют невидимую для человеческого глаза сеть лучей. Касание стилусом или пальцем преломляет эти лучи, точка нажатия регистрируется контроллером, а информация о её координатах передаётся на компьютер. Такая технология может использоваться как при производстве интерактивных досок, так и интерактивных приставок или интерактивных проекторов. Подобные устройства могут распознавать как одно касание, так и несколько точек контакта с поверхностью. Примеры компаний-производителей: , Epson, .

Технология DViT (Digital Vision Touch)

Во внутренние углы внешней рамы интерактивной доски встроены цифровые видеокамеры. Изображение с камер анализируется цифровыми сигнальными процессорами на предмет наличия стилуса или пальца в зоне видимости.

Местоположение точки нажатия регистрируется контроллером и передаётся на компьютер. С интерактивными досками такого типа можно работать пальцем или стилусом, они распознают более 2х точек касания и жесты. Работа с подобными интерактивными досками очень комфортна, есть модели, которые также определяют различные предметы (по англ. object-awareness): перо как инструмент письма, палец как манипулятор, теннисный мяч, ладонь или кулак как ластик. Единственный нюанс, о котором нужно помнить, — распознавание касания происходит ещё на стадии приближения к поверхности, поэтому кисти шали, бусы, слишком длинные рукава будут регистрироваться устройством, — со временем просто вырабатывается правильная привычка взаимодействия с доской. Держателем патента на данную технологию является компания . Подробную информацию можно получить по .

Сенсорные технологии May 27th, 2011

Удобнее кнопки и колеса

Интересно, догадывались ли Генри Эдвард Робертс и Мартин Купер, создавая первые в мире персональный компьютер и мобильный телефон, о том, что п ройдет каких-то полвека и уже привычное использование коммуникативных устройств - клавиатуры, мышки и джостика - отойдут на второй план?

Сегодня появился совершено иной способ взаимодействия человека и стационарного или портативного компьютера - это сенсорные технологии , которые также нашли активное применение в сенсорных информационных киосках самообслуживания и платежных терминалах и значительно упростили процесс «общения» потребителя с высокотехнологичным оборудованием. Современное сенсорное оборудование стало настолько притягательным и интуитивно понятным, что с ним могут работать даже неподготовленные пользователи.

Сенсорные технологии основаны на воздействии четырех базовых видов волн: резистивных, поверхностно-акустических, поверхностно-емкостных и инфракрасных и позволяют человеку принимать непосредственное (контактное) участие в запросе информации, осуществлении платежей и заказов и.т.д.

Как показывает практика, нашим клиентам важно знать о сенсорных технологиях больше, поэтому на нашем сайте мы публикуем описание базовых сенсорных технологий, которые легли в основу разработки сенсорных экранов :

Резистивная сенсорная технология.

Принцип работы резистивного экрана основан на действии резистивных волн. Такой экран имеет многослойную структуру и состоит из стеклянной панели и гибкой пластиковой мембраны, где н а панель и мембрану нанесено резистивное покрытие.

Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Во время нажатия на мембрану замыкаются резистивные покрытия и специальный контроллер регистрирует изменение сопротивления между электродами, преобразуя это изменение в координаты.

Различают четырех- и пятипроводные резистивные экраны. На мембране пятипроводного

резистивное покрытие заменено проводящим. Это позволяет сохранить работоспособность резистивного экрана даже при порезах на мембране, такой экран считается наиболее надежным.

Резистивные сенсорные экраны зарекомендовали себя в сфере обслуживания в составе POS-терминалов, промышленности, медицине, транспорте.Они обладают максимальной стойкостью к загрязнению, отличаются надежностью и долговечностью. Экран выдерживает 35 миллионов прикосновений к одной точке.

Поверхностно-аккустическая сенсорная технология (ПАВ).

Такие экраны работают на основе технологии поверхностно-акустических волн и представляют собой стеклянную панель, что позволяет получить максимально качественное изображение на сенсорном экране.

Такие экраны построены на принципе использования миниатюрных пьезоэлектрических излучателей звука, не слышимых человеком, установленных в трех углах экрана. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности. Специальные отражатели распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений и силу нажатия.

Сенсорный экран, основанный на технологии поверхностно-акустических волн обеспечивает максимальную прозрачность и высокое качество изображения, работоспобен даже при наличии царапин, фиксирует точные координаты и силу прикосновения, имеет антибликовое покрытие. Сенсорный экран может реагирует на прикосновение пальца, руки в перчатке и стилоса.

Инфракрасная сенсорная технология.

Инфракрасные сенсорные панели работают по двум очень сложным методикам.

Первая методика основана на использовании изменения выделенного тепла на поверхности панели. Этот метод не очень практичен, так как требует, чтобы руки были всегда теплыми.

Другая методика подразумевает расположение инфракрасных сенсоров по всему периметру панели, которые улавливают прерывание в потоке световых лучей над поверхностью экрана при прикосновении. Если один из инфракрасных лучей перекрывается попавшим в зону действия лучей посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером. Таким образом вычисляется координата касания. Отметим, что не имеет значения, какой из предметов (палец, авторучка, перчатка) помещен в рабочее пространство инфракрасному сенсорного экрана.

Считается, что инфракрасные сенсорные панели имеют самую прочную поверхность, и чаще всего используются в образовательных учреждениях (в качестве интерактивных панелей большого размера), медицинских , правительственных и государственных организациях , игровых автоматах, а также в военных целях.

Емкостная (электростатическая) или поверхностно-емкистная технология.

Существует два варианта емкостных экранов: поверхностно-емкостные и проекционно-емкостные. В обоих случаях управление осуществляется не нажатием, а касанием экрана. В основе технологий лежит способность человека проводить электрический ток.

Емкостный (электростатический) сенсорный экран обладает некоторым электрическим зарядом. Прикасаясь к сенсорному экрану, человек несколько меняет картину заряженности, перенимая часть заряда к точке нажатия. Датчики экрана расположены по всем четырем углам и следят за течением заряда на экране, определяя координаты прикосновения.

Ёмкостные экраны также отличаются надёжностью и высокой степенью прозрачности и долговечностью - возможность до миллиарда нажатий в одно и то же место. Однако, как правило, в работе с таким экраном нельзя пользоваться вспомогательным предметом (стилусом, перчаткой и т.п..) - только пальцем. Хотя уже существуют такие ёмкостные экраны, где возможна работа со специально изготовленного под данный вид экрана стилусом.

Емкостные сенсорные мониторы имеют хорошую прозрачность, долговечны, поэтому интенсивно используются в многолюдных местах: торгово-развлекательных центрах, супермаркетах, авиа- и ж/д кассах, на улице и т.д.

Существует также и другие новейшие сенсорные технологии, например, multi-touch с функцией сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания.

В последнее время начали активно разрабатываться и применяться схемы бесконтактной работы с сенсорным экраном. Современные датчики сенсорных экранов реагируют на тепло, движение рук, и совсем необязательно прикасаться к экрану. Такая система датчиков фиксирует движение пальца на расстоянии до двух сантиметров над поверхностью экрана.

Применение и развитие сенсорных технологий сегодня дает новый импульс развитию медицины, автомобилестроения, образования, банковской сферы, технологии «умный дом», преобразуются игры и развлечения, сервис и торговля и многое другое.

Здравствуйте. В данной статье мы постараемся разобраться в трёх основных видах сенсорных технологий, которые используются в производстве информационных киосков, в их преимуществах и недостатках.

Сразу оговоримся, что сегодня мы не будем глубоко уходить в технические аспекты оборудования, а скорее дадим общее понимание и принципы работы различных сенсорных технологий.

Хорошо. Теперь немного об истории появления сенсорного оборудования и далее переходим к обзору.

Первый сенсорный дисплей был разработан в США в 1972 году. Сэмюэль Херст - будущий основатель компании Elographics , а ныне Elo Touch S olutions - создал первый в мире сенсорный экран, используя инфракрасную технологию (ИК-сетка). Логика работы этого экрана была довольно простой и незаурядной, но это было открытие - открытие, благодаря которому сегодня почти у каждого есть телефон или планшет с touchscreen (тачскрин) экраном.

С тех пор многое изменилось: появились новые разработки, новые возможности, а с ними и требования к сенсорному оборудованию.
Неизменным же осталось положение компании Elo Touch Solutions на мировом рынке, они по-прежнему остаются лидерами и новаторами в области сенсорных технологий.

1) Инфракрасная сенсорная технология ( )

В основе действия инфракрасной технологии лежат датчики, которые расположены в специальной рамке вокруг экрана. Исходящими лучами они создают так называемую инфракрасную сетку. При воздействии предмета на экран эти лучи прерываются и, таким образом, вычисляется координата прикосновения.

Преимущество инфракрасной технологии заключается в том, что воздействовать на сенсорный экран можно практически любым предметом, а сами экраны не очень до́роги и поэтому достаточно часто используются в производстве сенсорных информационных киосков.

Но у технологии имеются и серьёзные недостатки, самым главным из которых является невозможность установки на экраны с инфракрасной технологией полноценной антивандальной защиты. Объясняется это тем, что каким бы ни было стекло самого экрана (прочным, закалённым или даже железным), датчики располагаются непосредственно перед ним (в рамке вокруг экрана). Поэтому их очень легко вывести из строя. Например, просто наклеив жвачку на край рамки, Вы перекроете инфракрасные лучи и исключите работу сенсорного экрана в этой области.

2) Проекционно-емкостная технология ( )

Сенсорный экран, выполненный по проекционно-емкостной технологии, состоит из тонкой пластины, на которую нанесена сетка из микро датчиков-проводников и двух пластин защитного стекла, между которыми и располагается рабочий слой. При прикосновении между пальцем и сеткой датчиков создается емкость, изменение которой вычисляется контроллером. Такой экран реагирует на воздействие любым неметаллическим предметом.

Основная особенность и отличие данной технологии заключается в том, что экран чувствителен к прикосновению даже через защитное стекло толщиной до 18 мм, а на сегодняшний день эта технология является уникальной и единственной, предназначенной для использования в уличных терминалах.

Находясь за защитным стеклом, экран стабильно работает в условиях атмосферных осадков (снег, дождь), а также устойчив к пыли и грязи. Установленное верхнее стекло может быть любой степени вандалостойкости, в том числе и бронированное.

Недостатком экранов с проекционно-емкостной технологией является их цена. Они практически совершенны, но пока достаточно до́роги в производстве.

3)
(экраны
, и )

Технология поверхностно-акустических волн (ПАВ) является фирменной разработкой компании Elo Touch Solutions и активно применяется компанией Сенсорные Системы в производстве сенсорных информационных киосков (оптимальное сочетание цены и качества).

В основе работы технологии ПАВ лежат акустические волны, которые проходят по стеклу экрана. Таким образом, при прикосновении к экрану волна частично поглощается, а специальные датчики определяют координаты касания. Воздействовать на такой экран можно только предметами, поглощающими акустическую волну, например, пальцем, пальцем в перчатке, специальным стилусом и др.

Недостаток технологии ПАВ так это невозможность её использования на экранах в уличных сенсорных терминалах, так как они "плохо переносят" воду.
Вода, так же как и палец, поглощает акустические волны и поэтому, мокрый экран просто не будет реагировать на другие касания.

Но одним из главных преимуществ сенсорной технологии ПАВ является возможность установки полноценной антивандальной защиты (). Такие экраны не требуют зазоров для датчиков , как в случае с инфракрасной технологией, и поэтому абсолютно герметично закрываются высокопрочными стеклами . Современные мониторы на сенсорной технологии ПАВ поддерживают функцию мультитач (множественного касания), что является чуть ли не основным требованием большинства заказчиков сенсорных информационных киосков.

В контроллере на сенсорных экранах c технологией ПАВ компании Elo Touch Solutions ещё и установлены специальные фирменные чипы , которые отслеживают данные ситуации и при необходимости усиливают сигнал, что обеспечивает им стабильную работу в самых разных условиях.

Цена таких экранов не многим выше, чем на экраны, созданные с инфракрасной сенсорной технологией, но они гораздо надёжнее и имеют существенно более долгий срок службы, что впоследствии, сэкономит вам деньги на обслуживании информационного киоска.



 

Пожалуйста, поделитесь этим материалом в социальных сетях, если он оказался полезен!